

FireWire™ Reference Tutorial

(An Informational Guide)

January 22, 2010

Abstract
This document is a FireWire tutorial aimed at engineers that have no previous
exposure or understanding of FireWire. Its purpose is to familiarize the reader with
FireWire and to build a sound and complete understanding of how the FireWire
bus operates from the experiences of expert members of the 1394 Trade
Association.

1394 Trade
Association
Specification

1394 Trade Association Specifications, Tutorials and Guides are developed within
Working Groups of the 1394 Trade Association, a non-profit industry association devoted
to the promotion of and growth of the market for IEEE 1394-compliant products.
Participants in Working Groups serve voluntarily and without compensation from the
Trade Association. Most participants represent member organizations of the 1394 Trade
Association. The work product developed within these working groups represent a
consensus of the expertise represented by the participants.

Use of a 1394 Trade Association document is wholly voluntary. The existence of a 1394
Trade Association document is not meant to imply that there are not other ways to
produce, test, measure, purchase, market or provide other goods and services related to
the scope of the 1394 Trade Association Specification. Furthermore, the viewpoint
expressed at the time a document is accepted and issued is subject to change brought
about through developments in the state of the art and comments received from users of
the specification. Users are cautioned to check to determine that they have the latest
revision of any 1394 Trade Association document.

Comments for revision of 1394 Trade Association Documents are welcome from any
interested party, regardless of membership affiliation with the 1394 Trade Association.
Suggestions for changes in documents should be in the form of a proposed change of text,
together with appropriate supporting comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in
relationship to specific applications. When the need for interpretations is brought to the
attention of the 1394 Trade Association, the Association will initiate action to prepare
appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
315 Lincoln, Suite E
Mukilteo, WA 98275
USA
1394 Trade Association Documents are adopted by the 1394 Trade
Association without regard to patents which may exist on articles,
materials or processes or to other proprietary intellectual property
which may exist within a specification. Adoption of a document by the
1394 Trade Association does not assume any liability to any patent
owner or any obligation whatsoever to those parties who rely on these
documents. Readers of this material are advised to make an
independent determination regarding the existence of intellectual
property rights, which may be infringed by conformance to this
document.

Published by

1394 Trade Association
315 Lincoln, Suite E
Mukilteo, WA 98275 USA

Copyright © 2010 by 1394 Trade Association
All rights reserved.

2
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Table of Contents

Author .. 4

Contributors .. 4

Copyright Notices .. 5

IEEE Copyright ... 5

IEEE 1394 Technological Background ... 6

Introduction ... 6

FireWire Applications ... 7

FireWire Products .. 8

Host Adapters .. 9

Cables & Connectors ... 12

Repeaters ... 18

Digital Cameras ... 23

External Hard Disks .. 24

Example 1394 Bus ... 25

Double & Quad Host Adapters .. 27

IEEE1394 Standards .. 30

IEEE1394 Technology .. 31

Module Architecture .. 31

Conceptual Bus Model .. 32

IEEE1394 Backplane VS Cable Environment .. 35

FireWire Speeds & Backwards Compatibility .. 36

1394 Addressing Model .. 40

Size Notation & Endianess .. 42

Bus Reset & 1394 Bus Self-Configuration.. 44

Beta Loops & Redundancy .. 47

1394 Protocol Layering ... 47

1394 Bus Packets ... 48

The 1394 Cycle - Part 1 ... 52

The 1394 Cycle - Part 2: Cycle Start Packets & the Cycle Master 53

The 1394 Cycle - Part 3: Cycle Structure & Cycle Drift ... 56

The 1394 Cycle - Part 4: Isochronous & Asynchronous Traffic 58

The Essence of Isochronous Traffic .. 60

Isochronous Bandwidth ... 62

3
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Asynchronous Traffic .. 62

Asynchronous Stream Packets .. 63

Packet Size Restrictions .. 65

Link Layer Operation .. 66

Transaction types: Read, Write, Lock ... 67

The CSR Model ... 69

Configuration ROM & GUIDs .. 71

Transaction types ... 72

DMA .. 73

DMA Contexts & Context Programs .. 75

Serial Bus Management ... 77

4
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Author:
Dimitrios Staikos Codemost Technology Co. Ltd.

Contributors:
Les Baxter Baxter Enterprises

Burke Henehan Henehan Consulting

Don Harwood PLX Technologies

Eric Anderson Apple

All members of the 1394 Trade Association
Photos courtesy of Point Grey Research Inc. and IOI Technology Corporation

5
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Copyright Notices

IEEE Copyright
Portions of this specification are copied from published IEEE standards, by permission.
The source documents are:
IEEE Std 1212-2001, Standard for a Control and Status Registers (CSR) Architecture for Microcomputer Buses
IEEE Std 1394-2008, Standard for a High-Performance Serial Bus

The IEEE copyright policy at http://standards.ieee.org/IPR/copyrightpolicy.html states, in part:
Royalty Free Permission
IEEE-SA policy holds that anyone may excerpt and publish up to, but not more than, ten percent (10%) of the
entirety of an IEEE-SA Document (excluding IEEE SIN books) on a royalty-free basis, so long as:
1) Proper acknowledgment is provided;
2) The 'heart' of the standard is not entirely contained within the portion being excerpted.
This includes the use of tables, graphs, figures, abstracts and scope statements from IEEE Documents.

6
 Copyright © 2010, 1394 Trade Association. All rights reserved.

IEEE 1394 Technological Background

Introduction
This document aims to provide an extensive description of IEEE1394 that will familiarize the
reader with all the significant technological aspects, terminology and features of the
IEEE1394 technology.

“IEEE1394 High Performance Serial Bus” is the official name for this technology, which is
also known with the commercial trademark FireWire, a trademark owned by Apple.
Additionally the i.LINK trademark was registered by Sony for its own implementation using
new small connectors.

This document is written for software and hardware engineers who desire to acquire a
technical background on IEEE1394 that covers more than the surface, marketing-grade,
material that appears in articles found in tech magazines and web sites. Still the document
does not ascribe to explaining everything. An effort has been made to keep its size reasonable
(60-70 pages including lots of diagrams) so that the expectation that engineers will actually
read it can be reasonably high.

The goals are twofold:

1. Help engineers with their FireWire technology evaluations.
“Should we use FireWire?” is a very important question that engineers are called
upon to answer. These engineers are usually faced with serious time constraints and
don’t have a considerable wealth of resources to help them get a clear idea about
FireWire so that they can make an educated choice.
FireWire is not simple but this is a natural price to pay for power and flexibility. It is
a goal of this document to help engineers get a solid understanding of what FireWire
is all about so that they can make their choice based on a full understanding of the
bus' true capabilities instead of fear and confusion infused by competing technology
evangelists.

2. Help engineers who work with FireWire make better/correct use of it.
Even after making the decision to work with FireWire many engineers still don’t have
a level of understanding that will allow them to use the full capabilities of the bus and
build a successful solution. The capabilities of FireWire are incorrectly used, or in the
best of cases underutilized. When troubleshooting is required no one is sure about
what to do first, because no one truly understands what is going on even when the
system works without trouble. The question to the engineer now is “What on earth is
going on?”
As a natural consequence of this lack of understanding FireWire is unfairly blamed as
too complex and unreliable.
It is a goal of this document to help engineers get a solid understanding of what
FireWire is all about so that they can use it properly to build successful solutions that
they know how to troubleshoot.

7
 Copyright © 2010, 1394 Trade Association. All rights reserved.

FireWire Applications
We begin the description of FireWire by listing some of the application areas where FireWire
is used.

The majority of industrial FireWire applications involve digital cameras. Such applications
could be generically categorized as "machine vision" applications, but this is a very broad
term. As FireWire is getting more recognized as a reliable solution for such "machine vision"
applications, different types of industrial applications have also emerged.

FireWire hard disks are extensively used in storage solutions and hold a considerable portion
of the FireWire market.

FireWire applications at the moment include:

• Robotic Control
Such systems use FireWire cameras as "environmental sensors". The computer "sees" the
environment through FireWire cameras, performs image analysis and provides
movement instructions to robotic "hands" that need to interact with the environment
(pick up objects, place objects into new positions, etc).

• Automated Optical Inspection
Such systems use FireWire cameras to take "photos" of products manufactured in
automated assembly lines (e.g. PC motherboards, PC adapters, cell phones, etc) and
examine whether the said artifacts appear as if they have been constructed properly (i.e.
they have no visible discrepancies).

• Medical Imaging
Such systems might use FireWire cameras to create 3-dimensional models of a patient's
face or body. These models are then used in various ways through the medical
procedures.

• Filming
Such systems might use arrays of FireWire cameras to create special 3-dimensional
visual recordings used in special visual effects.

• Security Surveillance
FireWire cameras are used to monitor places of interest for security reasons.

• Storage
High performance external hard disks for storage and backup.

• Communication Systems
FireWire is used as an internal local network in data centers for high speed
server-to-server communications.

• Audio & Pro-Audio
Specialized audio applications like amplifier/speaker control, audio channel
routing/mixing, audio stream delivery for theater systems and concerts, etc, are done with
FireWire.

• Set-Top Box
By FCC regulation all set-top boxes in the USA are required to have a functional
FireWire port to permit recording of digital content.

• Digital Camcorders
Many ditigal camcorders provide a FireWire port to allow easy connectivity to the user's
personal computer.

• Commercial Aviation
Such systems use FireWire as a high-capacity local network that can also provide the
"Quality of Service" (QoS) required for on demand video streaming in in-flight
entertainment systems.

8
 Copyright © 2010, 1394 Trade Association. All rights reserved.

• Military
FireWire is being used as a reliable, high-capacity local network that carries control
information and sensor data all over a military aircraft, helicopter or vehicle.

• Automotive
FireWire is making strong efforts to get established as the "in car" communications
network for modern and future cars, where services like on demand video, TV, music
will be available per passenger seat.

FireWire Products
This section lists the most commonly available FireWire products. Any product that has a
FireWire connector/interface and can communicate over FireWire is considered a "FireWire
Product", although it might also have other interfaces too. For example, today most external
hard disks have a FireWire, a USB and possibly an eSATA connector.

The most common FireWire product categories are shown below:

• Host Adapters (also known as Host Controllers)
These are adapters (cards) that we need to install in a PC so that it obtains a FireWire
interface. Many motherboards come with on-board FireWire, so such computers may
not need a separate host adapter at all. Still, these too are host controllers that are
simply embedded on the motherboard.

• Cables
• Repeaters

In essence, a repeater is a cable extender and splitter. If you need to install a FireWire
device at a distance greater than the cable in use allows, then you use one or more
repeaters so that you can "link" several cables in a row and achieve the desired
distance.
Also, if your FireWire host adapter has 3 ports and you want to connect 5 cameras
then you might need one or more multiport repeaters to provide the additional needed
ports. For example a 4-port repeater can connect 3 cameras to a single port of a host
adapter.

• Digital Cameras
The vast majority of FireWire cameras adhere to the IIDC (Industrial Imaging Digital
Camera) standard. This is a standard for the software interface of the camera and the
types of video formats that it provides. All non-IIDC implementations are considered
"custom" and are used for specialized applications (security, military, etc).

• External Hard Disks
• Digital Camcorders

The following sections illustrate some sample FireWire products.

9
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Host Adapters
This is a FireWire host adapter with 3 external FireWire ports and a PCIe interface to connect
to the PC:

External FireWire Port

PCIe Interface

10
 Copyright © 2010, 1394 Trade Association. All rights reserved.

This is a FireWire host adapter with 2 external FireWire ports, 1 internal FireWire port and a
PCI-Express interface:

The terms "external" and "internal" refer to whether the port is actually accessible from
outside the PC enclosure (visible from the outside).

Internal FireWire Port

External FireWire Port

PCIe Interface

11
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The next example is a PCI-Express host adapter with 2 FireWire ports and one GOF port:

FireWire data can be transmitted over different types of cables and each type of cable has its
own port (connector) as in the above example with the GOF port.

Finally, the next host adapter is an ExpressCard adapter, suitable for laptops:

12
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Cables & Connectors
FireWire has several different types of ports and thus several different types of cables. The
"standard" FireWire cables have 4 different connectors and then there are different connectors
for each additional type of cables (CAT5e, POF, GOF, etc). The additional cable types are
never referred to as "FireWire cables"; thus the term "FireWire cable" means the standard
(original) 1394 cable type.

The existence of 4 different connectors for the standard 1394 cables is a result of the
evolution of the 1394 standard and the use of two signaling modes, 1394a and 1394b
signaling. However it can lead end users into serious confusion and by many people it is
considered as one of the weaknesses of FireWire when compared to technologies like USB.

The table below lists the 4 different connectors for FireWire cables:

Connector Characteristics Photo
4-pin
(i.Link)

Can only use
1394a
signaling.
Speed up to
400Mbps.
Cannot carry
cable power.

6-pin Can only use
1394a
signaling.
Speed up to
400Mbps.
Can carry cable
power.

13
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Bilingual Can use 1394a
or 1394b
signaling.
Speed up to
800Mbps
(specified up to
3200 Mbps).
Can carry cable
power.

Beta-only Can only use

1394b
signaling.
Speed up to
800Mbps
(specified up to
3200 Mbps).
Can carry cable
power.

The Bilingual and Beta-only connectors look so much alike that even FireWire experts may
have trouble making them apart. Of course, this also means that the plugs for these sockets
also look very much alike, leading to even further confusion. So we must clarify the
difference here.

By looking at the photos above the difference might not be immediately evident. Beta-only
connectors have a wider opening at the top of the socket. Respectively, beta-only plugs (jacks)
have a wider opening at the top, as shown in the image below (where a Beta-only cable is
shown against the two jacks):

14
 Copyright © 2010, 1394 Trade Association. All rights reserved.

By this insightful design it is possible to insert a Beta-only cable into either jack, but a
bilingual cable can only be inserted in the bilingual jack. This is illustrated graphically in the
next image which is taken from the IEEE1394-2008 standard:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 4-46)

The FireWire cables usually manufactured have the same type of connector at each end:
either 6-pin on both ends, or 9-pin on both ends.

15
 Copyright © 2010, 1394 Trade Association. All rights reserved.

However it is generally possible that the cable has different connectors on each end.

The following pictures show FireWire cables with a 4-pin and a 6-pin connector, usually
called "4-to-6" cables:

16
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The next pictures illustrate FireWire cables with a 6-pin and a 9-pin bilingual connector (6-to-
9 cables), the first one utilizing a locking connector:

Of course, in the cables shown above, the 9-pin connector is a bilingual connector. Obviously
it would not make sense to make a cable that supports only 1394a signaling on one end and
only 1394b signaling on the other end. As a result there is no such thing as a
6pin-to-9pin(BetaOnly) cable.

17
 Copyright © 2010, 1394 Trade Association. All rights reserved.

There are even 4-to-9 cables, where the 9-pin connector is obviously a bilingual connector:

18
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Repeaters
As described earlier, 1394 repeaters serve two basic roles:

1. Cable Extenders
2. Cable Splitters

1394 repeaters look similar to USB hubs or Ethernet hubs/switches but they are actually
totally different. As their name implies, their single purpose is to repeat signals between
their ports. Every bit that gets received in one of their ports gets immediately repeated
(retransmitted) on their other ports.

The 1394 protocol ensures that incoming data traffic on any device can only come from one
port at a time, so there is never a problem or any other complexity with the operation of a
1394 repeater (like buffering packets, etc).

The following fact about 1394 devices must be stressed here:

All1 1394 devices are repeaters.

This is one of the basic premises of the 1394 design. A host adapter with 3 ports is also a
repeater that repeats all signals between its 3 ports, a digital camera with 2 ports is also a
repeater that repeats all signals between its two ports, etc.

This way, we can connect a set of 1394 devices in any almost way we like and a 1394 bus is
formed, because all the signals are repeated by all devices across the whole cable length.

The devices in the category that we are describing now are "nothing more than repeaters" so
they are just called "repeaters". This does not mean that they are the only devices that repeat
traffic. It means that these devices only repeat traffic and perform no other function.

Most 1394 repeaters have only 3 ports, due to the same technological limitations that were
mentioned earlier for host adapters (the available silicon only supports up to 3 ports). These
are repeaters with exactly one 1394 node inside them (one 1394 chipset).

However some designs enclose more than one 1394 node to make more repeating ports
available. The marketing departments of companies that make such repeaters, tend to market
them as "hubs", but it should be clearly understood that they are just composite "signal
repeaters".

1 All multi‐port FireWire devices. A single port device obviously has no target ports to repeat to.

19
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The following image displays a 3-port repeater with 9-pin bilingual ports:

The picture shows two viewpoints of the device so that we can see all three ports (one port at
the top side and one on the left and right sides).

The round hole is a power plug. 1394 repeaters do not only repeat signals. They also repeat
cable power (1394 cables can also carry power). A repeater does not require external power to
operate. Its power consumption is so small that it can function with the power already
available on the 1394 cable. However, other, more power-hungry devices with no external
power may exist on the bus and they expect to find enough power on the cable. The power
plug on a repeater acts as an additional "entry point" for bus power so that all devices can
function properly.

The following images illustrate two 5-port repeaters (two viewpoints):

20
 Copyright © 2010, 1394 Trade Association. All rights reserved.

As stated earlier, and as can be seen on the diagram on top of the first device, these devices
actually contain 3 FireWire nodes, i.e. 3 smaller "elementary" repeaters as shown below:

So this device actually contains three 3-port repeaters. These repeaters are connected to each
other (so that they are on the same 1394 bus) and the remaining 5 ports are exposed outside
the box.

There are also 2-port repeaters, which basically serve as cable extenders since they don't
provide any new connection point to the bus. The following image shows such a product:

Node A
(Repeater)

External 1394
port

Repeater box
(enclosure)

Internal connection between
two FireWire nodes

Node B
(Repeater)

Node C
(Repeater)

21
 Copyright © 2010, 1394 Trade Association. All rights reserved.

FireWire devices/repeaters can also repeat traffic into ports of different types. The following
image shows a 1394 host adapter (which is also a repeater of course) that has two 1394b ports
and one 1394a port:

Most "plain repeater" products in the market don't come with a mixture of 1394a and 1394b
ports, but may come with mixtures of other types, usually two 1394 ports together with some
other cable type.

22
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The picture below illustrates two viewpoints of a repeater by Point Grey with two 1394a ports
and a CAT5e port, using GigE signaling to transport the FireWire data over the CAT5e cable:

The next picture below shows two viewpoints of a repeater with two 1394b ports and a port
for an optical cable:

23
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Digital Cameras
As stated earlier, 1394 cameras are present in many FireWire applications. Some people also
use the more generic term "sensor", since a camera is nothing more than an optical sensor,
usually in the visible spectrum. However, an infra-red camera is most likely to be considered
as a "sensor" rather than a camera.

By definition, all 1394 cameras are digital. They capture and encode "images" in digital bits
(zeros and ones) and then transmit these digital bits over the 1394 cable.

Most 1394 cameras implement the IIDC protocol, of which the current version is 1.32 (as of
2009, with version 2.0 in the making). This is a "software interface" protocol, which defines a
set of registers and commands that an IIDC compliant camera should "understand"
(implement) so that software can interrogate the camera and configure it as needed.

The IIDC protocol also defines a set of standard, predefined video formats (image size + pixel
encoding + packaging) that cameras may implement, but also allow each manufacturer to
define custom video formats.

The reason for the existence of the IIDC standard is of course interoperability. When standard
video formats are being used, then it should be possible to replace a camera from one
manufacturer with a camera from another that supports the same video format, without any
need for changes in the software.

Since most of the 1394 cameras in the market adhere to the IIDC protocol, and IIDC applies
only to 1394 cameras (i.e. there is no IIDC for GigE cameras), the terms "1394 camera" and
"IIDC camera" are in today (2009) interchangeable. However IIDC 2.0 will also support
additional interface technologies (GigE, USB, etc).

The following image shows an IIDC camera with one 1394b bilingual port:

The socket on the top left corner is for "triggering" purposes, not for power. Most IIDC
cameras don't have a power socket; they get the power they need from the 1394 cable (which,
as mentioned earlier, carries power).

24
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The picture below displays both sides of a "board" camera, i.e. a camera without any
enclosure, so that it can be precisely adapted to the specific needs of the customer:

As shown in the image above, FireWire cameras are often sold without a lens, so that the
customer can decide on the exact lens that is appropriate for their needs, and of course they
may have just a single FireWire port.

External Hard Disks
External hard disks today have a multitude of interfaces and FireWire is usually included. The
image below shows a hard disk that has two 1394b ports and one 1394a port (all part of a
single 1394 "node" so they repeat signals), an eSATA port and a USB port.

External hard disks like the one shown below, usually require more power than the 1394 bus
can carry. They cannot operate only on bus power and have a separate power socket (unlike
cameras). However many FireWire hard disk models can get powered from the FireWire bus,
because the FireWire bus carries much more power than other powered buses like USB.

25
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Example 1394 Bus
The following image shows an illustration of a 1394 bus as depicted by a software tool:

We will have to run a little ahead of ourselves to explain everything to full detail (not all
relevant technical issues have been explained yet), but there is enough we can describe about
this typical 1394 bus. For starters, the fact that software can draw this image means that 1394
provides very rich connectivity and topology information. "Smart" devices like cameras and
disks also provide a fairly rich description of themselves (camera vendor, model, etc).

So, as seen above, 1394 software has detailed information about how many ports each device
has, which port of every device gets connected to which port of another device, etc.

Yellow nodes are 1394b nodes2 and white nodes are 1394a nodes3. The 1394 bus allows the
user to connect both 1394a and 1394b devices on the same bus. Blue links are 1394a
connections and green links are 1394b connections. It should be apparent that a 1394a device
(such as node 8) can only connect to a 1394b device (such as node 6) through a 1394a
connection.

Nodes 6 and 14 are 1394b repeaters and nodes 5 and 8 are 1394a repeaters. In reality, node 8
is a host adapter with six 1394a ports, hosted inside a PC that is turned off. Since the device is
turned "off", it functions only as a repeater, so the software depicts it that way.

Also note that this is a single node 6-port device. That was only technically possible with
chips of 1394a technology. No 1394b chips have been manufactured that support more than 3
ports.

2 Capable of 1394b signaling and usually also 1394a signaling.
3 Capable of 1394a signaling only.

26
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Some other facts are worth mentioning in this image. All 1394 buses are logically organized
as "non-circular graphs", or "trees". Every connected port is connected to either a "child"
node or a "parent" node, with no circles (loops) being formed. At the top of this hierarchy lies
the "root" node, which has no parent.

These relationships are also demonstrated in the following diagram from the 1394-2008
standard:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure E.22)

The parent-child relationships are purely "logical", not functional. They only serve for
building up the tree topology and are utilized during the bus arbitration process (selecting
which node is going to transmit data) to propagate arbitration requests to the node that acts as
arbitrator.

The "parent" does not offer any other "special" services to each "child" nor the other way
round, neither does the parent perform any "special" functions on behalf of its children. The
devices operate independent of one another and they would operate the same way even if the
parent-child relationship was reversed.

Any node, even a repeater, can serve as the root node. However, in practice, a "more capable"
node is usually assigned the role of the root node; most often, a PC acts as the root node, as in
the picture shown earlier.

When there is only one PC on the bus, then FireWire looks and acts like a peripheral bus; a
bus that was made so that peripherals can connect to a PC (like the USB bus).

However, 1394 is not strictly a peripheral bus; it can function as one. In the words of the
1394-2008 standard, paragraph 1.1.1: This standard describes a high-speed, low-cost serial bus
suitable for use as a peripheral bus, a backup to parallel backplane buses, or a local area network.

The fact that the operating systems of Microsoft and Apple treat FireWire as a peripheral bus
does not make FireWire a "peripheral bus".

27
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Double & Quad Host Adapters
In the last couple of years "dual" and "quad" FireWire host adapters have appeared on the
market. These devices take advantage of the core PCI specification that allows a physical
PCI/PCIe device to have more than one "logical" device in it (i.e. function).

A standard host adapter is a single physical device with just one "function". A dual host
adapter is a single physical device with two "functions" and a "quad" adapter has four
"functions".

So a "dual" adapter is functionally equivalent to two completely independent host adapters,
however it saves space inside the PC, and allows more 1394 "functions" to be installed into a
given number of slots.

The image below shows a dual adapter and the core of the two functions:

Although this physical device appears to have four 1394 ports, these ports do not repeat
traffic between all of them, since each pair belongs to a different adapter and the two adapters
are completely independent of one another (not connected to each other; not on the same 1394
bus). The chips used in these adapters support three ports, but there is not enough space to
accommodate these ports on the board, so there are only two per adapter.

28
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Similarly, the next image shows a quad adapter:

In this example, there is only one 1394 port exposed for each of the four adapters.

It must be emphasized again that these adapters are logically independent of one another. This
means that when computer software asks the operating system "how many 1394 adapters you
have?" the answer is "four", not "two dual adapters" or "one quad adapter". Normal computer
software (applications) has no way to determine if two 1394 adapters come physically in one
piece (a dual adapter) or two pieces (two single adapters).

Special computer software (device drivers) can get some extra "hints" that an adapter might
be dual by examining the PCI-tree topology, but still the answer cannot be definite, because
even if this software "sees" a PCI switch connecting two 1394 adapters, it cannot be sure of
the physical location of this PCI switch (on a multi-adapter or on the motherboard).

In the same vein, when 1394 device drivers themselves load, the operating system does not
distinguish in any way between single, dual and quad adapters. The device driver has no idea
there are dual or quad adapters, unless the user (system integrator) has planted special
additional information to the system (e.g. in the system registry) that helps the device driver
identify these multi-adapters correctly.

29
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The reasons why dual and quad adapters have appeared in the market are several:

• Save space in PCI slots.
• Bandwidth limitations

Suppose an application that needs to work with 8 cameras, where any 3 cameras
combined exceed the bandwidth of FireWire. There can only be 2 cameras per
FireWire bus so the application requires 4 buses, which are readily provided by a
quad adapter or 2 dual adapters. If 4 separate adapters were used, then a configuration
problem would be evident, since in most modern computers motherboards don’t have
4 free PCI slots (or 4 free PCIe slots).

• FireWire has a limit of 63 devices per bus. These of course include devices like
repeaters. If an application needs to monitor 500 environmental sensors, then these
sensors will have to be arranged into multiple FireWire buses.

However, a dual or a quad adapter cannot solve the problem of an application that requires a
high resolution video format at a very high frame rate, a combination that results in more than
the 800Mbps available by FireWire currently.

30
 Copyright © 2010, 1394 Trade Association. All rights reserved.

IEEE1394 Standards
The first FireWire standard was released by IEEE in 1995. As the technology evolved, several
amendments (extensions) were made to the standard. All these amendments were reconciled
into a single document in 2008.

The following list shows the evolution of the 1394 standard and the major contributions on
each step:

• IEEE1394-1995
The very first FireWire standard. Introduced bit rates of 100Mbps, 200Mbps and
400Mbps.

• IEEE1394a-2000 (amendment)
Introduced significant performance improvements (improved efficiency).

• IEEE1394b-2002 (amendment)
Introduced the 1394b signaling and the 800Mbps transfer rate.

• IEEE1394c-2006 (amendment)
Electrical specifications for new cable types (CAT5e, CAT6, GOF, POF, GigE)

• IEEE1394-2008
Incorporates original document and amendments into a single standard. Also
introduces electrical specification for 1600Mbps and 3200Mbps data rates.

31
 Copyright © 2010, 1394 Trade Association. All rights reserved.

IEEE1394 Technology

Module Architecture
The following reference from the 1394-2008 standard, annex Q1, describes the 1394 "Module
Architecture":

The serial bus architecture is defined in terms of nodes. A node is an addressable entity,
which can be independently reset and identified. More than one node may reside on a
single module, and more than one unit may reside in a single node, as illustrated in
Figure Q.1.

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure Q.1)

Each module consists of one or more nodes, which are independently initialized and
configured. Note that modules are a physical packaging concept and nodes are a logical
addressing concept. A module is a physical device, consisting of one or more nodes that
share a physical interface. In normal operation, a module is not visible to software.
A node is a logical entity with a unique address. It provides an identification ROM and a
standardized set of control registers, and it can be reset independently.

The text above explains why when we are talking about 1394 bus we so often refer to "nodes".
In most cases there is only one "node" in each "module" (a physical device), but there are
cases where this is not true (dual & quad adapters, "complex" repeaters).

But these exceptions are rare in comparison to the majority of 1394 devices, so in practice the
terms "1394 device" and "1394 node" are interchangeable.

32
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Conceptual Bus Model
At this stage it is time to make the distinction between a "bus" and a "network". The
distinction can be a little blurry, because as we saw earlier, from the reference to 1394-2008
paragraph 1.1.1:

This standard describes a high-speed, low-cost serial bus suitable for use as a peripheral
bus, a backup to parallel backplane buses, or a local area network.

FireWire is a "bus" that among others is suitable for use as a "local area network". Moreover
with the proliferation of so many different "bus" technologies that can also act as a local area
network it might be hard to see the distinction.

So at this point we will describe the fundamental conceptual model of a computer "bus"
which is shown in the illustration below:

According to this model, there is a "shared communication line" (drawn horizontally across
the bottom of the image) and all devices connect directly to this "shared communication line".

There is of course some sort of addressing scheme so that devices can identify themselves
with a unique address. However, all traffic is "broadcast" at the wire level. A transmitted
packet is "thrown" on the communication line and is "visible" to everyone; it travels through
the whole line for everyone to "see".

Among those that "see" the packet is the intended target of the packet. This device recognizes
the packet as one that refers to itself and "picks it up" (receives it). The 1394 standard
prohibits one device from receiving a packet addressed to another device. An exception to this
rule is a bus analyzer that receives all traffic, simply because it "decides" to do so. The traffic
is for everyone to "inspect" on the shared communication line, and the data packet does not
stop "propagating" across the bus because some node decided to receive it.

The decision to receive a packet is performed automatically by hardware components: The
headers of all packets that appear on the communication line are automatically inspected by
the hardware of each node. As soon as the hardware recognizes its own address in the packet
header, it proceeds to receive the full packet.

Since there is only a single shared communication line available, then there must be a way for
deciding who gets to transmit next. This is a process known as "arbitration" and different
buses implement it in different ways.

33
 Copyright © 2010, 1394 Trade Association. All rights reserved.

This fundamental bus architecture is exactly how the first local area networks (Thin & Thick
Ethernet, 10BASE2/10BASE5) where physically constructed. The shared communication line
was injected with BNC connectors so that the devices could physically attach to the shared
cable, as shown below:

So were Thin & Thick Ethernet networks or buses after all?

The answer is nicely depicted in a relevant topic in Wikipedia. They were "bus networks":

A bus network topology is a network architecture in which a set of clients are
connected via a shared communications line, called a bus.

So there is a clear distinction between the shared communications line, which is a "bus" and
the entire network that is a "bus network".

This certainly explains some of the possible confusion between what a bus is and what a
network is. However, in all the above cases we are strictly referring to "local area" networks,
because only then it is possible to physically share the same communications line.

The term "network" is a bit too broad by itself, so more often the correct terms to use are
"computer network" or "telecommunications network".

In general, the term "computer network" refers to a "group of interconnected computers",
where "computers" is taken with its broader meaning; i.e. a printer is also a computer, a router
is also a computer, performing highly specialized functions, in contrast to a personal
computer that can do "anything" through software.

The term "telecommunications network" refers to a "network of telecommunications links and
nodes arranged so that messages may be passed from one part of the network to another over
multiple links and through various nodes".

These two terms are in fact overlapping to a great degree. Any non trivial local area computer
network (e.g. one that spans a whole building) involves many links and many nodes (routers,
hubs, etc) that create the illusion of a "local network".

34
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The diagram below depicts one such "local area" computer network:

In the above diagram the term NID means "Network Infrastructure Device". L2 and L3 refer
to different types of "network links" according to the TCP/IP specification (L2 is "Data Link",
L3 is "Network Link").

There are distinctive differences between a bus and a network. In a network:

• The traffic does not get propagated to the entire network.
• The various segments of the network operate locally, completely independent of one

another.
• There is no central arbitration about who gets to transmit next. Arbitration (if any) is

limited to the local segments.
• Traffic going from one segment to another segment has to be appropriately "routed"

to the destination by intermediate devices (hubs, routers).

The conceptual model of a computer/telecommunications network is shown below:

A data packet from one computer to another gets transmitted through the appropriate parts of
the network so as to reach the intended destination.

35
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The engineers that design such networks can implement links of different capacities between
different parts of the network, so that they can handle the traffic load that is expected in these
links.

FireWire is a bus that can act as a local network as well. There is no routing involved.
According to the IEEE 1394.1 standard it is possible to interconnect multiple 1394 buses with
1394 bridges and this would create a network that requires routing, but such bridging products
are not widely available.

IEEE1394 Backplane VS Cable Environment
The conceptual bus model that was shown earlier, consisting of a single backbone line with
nodes connecting to it, may be conceptual, but it also exists in practice as a physical
implementation and is usually called a "Backplane Bus".

Indeed the IEEE1394 standard defines 1394 for two "environments" as shown in the reference
below from IEEE1394-2008 annex Q2:

The physical topology of the serial bus is divided into two “environments,” as shown in
Figure Q.2. One is called the backplane environment and is defined in this standard,
although implementations may require additional physical-layer descriptions contained
within other backplane bus standards. The other part is the cable environment and is
completely specified in this standard. Interconnected nodes may reside in either
environment without restriction.

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure Q.2)

Q.2.1 Cable environment
The physical topology for the cable environment is a noncyclic network with finite
branches and extent. “Noncyclic” means that closed loops are unsupported.

Q.2.2 Backplane environment
The physical topology of the backplane environment is a multidrop bus. The media
consists of two single-ended conductors running the length of the backplane. Connectors
distributed along the bus allow nodes to “plug into” the bus.

The backplane implementation of 1394 has been used in applications in specialized
telecommunications, space and industrial systems, often utilizing the two conductors reserved

36
 Copyright © 2010, 1394 Trade Association. All rights reserved.

for a serial bus in the VME, PCI and Futurebus standards. The rest of this document refers
solely to the "cable environment".

As can be seen from the diagram above and previous bus examples, the shared
communications line in the cable environment is "built-up" by many cables joined together
through 1394 nodes that also act as signal repeaters.

FireWire Speeds & Backwards Compatibility
Another topic that should be clarified here is the topic of transmission speed for FireWire.
The code names for these speeds are shown in the table below:

Transmission Speed Code Name
100 Mbps S100
200 Mbps S200
400 Mbps S400
800 Mbps S800

1600 Mbps S1600
3200 Mbps S3200

For completeness it should be stated that these are "nominal" rates. S100 is not actually
100Mbps, but 98.304 Mbit/s4. This is almost 100Mbps so for marketing reasons it is called
100Mbps (98.304 is a very awkward number to pronounce or to remember).

In the 1394 standard, this 98.304 Mbps data rate is called the "Base Rate". All other data rates
are exact multiples of the Base Rate.

So for example S800 is actually 8*(Base Rate) = 786.432 Mbps.

The S1600 and S3200 data rates are fully defined (electrical specification) and at the time of
this writing and in the implementation stage.

The following points must be made clear:

• FireWire devices support multiple transmission speeds. They can transmit and receive
data even at lower speeds than their maximum capability.

• Similarly, FireWire devices can repeat traffic which runs at lower speed than their
maximum capability.

This is clearly done for reasons of backwards compatibility. For example, it should be
possible to have a PC with an S800 host adapter control an S400 IIDC camera. Since the
camera cannot "understand" higher speed traffic, all commands sent to it must be transmitted
at S400. Similarly, any responses or image data from the camera will be at a S400 data rate,
so the S800 host adapter must be able to receive them.

Note that in the points made above, the author mentions "maximum capability" instead of
"maximum speed". There is a reason for that and this is yet another source of confusion over
FireWire. This confusion is further extended by the S800 data rate that came about with the

4 The dot '.' is used a decimal separator in this document in accordance with the IEEE1394 standards.

37
 Copyright © 2010, 1394 Trade Association. All rights reserved.

advent of the 1394b-2002 standard. It is always correct to say "a 1394b device", but saying
"an S800 device" can be technically incorrect sometimes as we shall see.

To start with, 1394a and 1394b are signaling modes, not speed tags. It is perfectly legal (and
actual devices exist) to have a host adapter with three 1394b ports that can only transmit up to
S400. So saying about a device that it is a "1394b device" technically only tells us that the
device has 1394b ports and can use 1394b signaling (and 1394a too if the ports are bilingual).

Moreover it should be stressed that technically, 1394 nodes cannot be said to have a
"maximum transmission speed", a "maximum data rate". The maximum data rate capability is
a property of the FireWire ports, not the FireWire node.

Let's look again at a previous example, a host adapter with one 1394a port and two 1394b
ports.

In the most likely case the 1394b ports are capable of the S800 data rate, but the 1394a port
cannot achieve more than the S400 data rate, because higher data rates are only possible with
1394b signaling.

So it would be slightly incorrect to describe this device as an "S800 device", because some of
its ports have lower capabilities. It would be better to describe it as "S800-capable device".

Note that the above is only possible with 1394b chips, because they are able to support
different speeds per port and different port types. In most cases however, all the ports of a
1394b device have the same maximum speed, so in the terminology used with 1394b devices
we might say "that is an S800 1394b device" without being incorrect. In any case we must
remember that S800≠1394b; S800 and 1394b are not names for the same thing.

A question that naturally rises from the above is how exactly a 1394 node with an S400 and
an S800 port repeat traffic?

To answer this we must start with the 1394 standard fact that the transmission speed of a
packet is an electrical attribute and cannot change along the way. A packet that gets
transmitted as an S100 packet will traverse the whole bus at that data rate, even while it
crosses higher speed links between devices.

38
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Naturally a transmission at a lower data rate can cross a link of a higher data rate. But what
about a packet at a higher data rate that reaches a link of lower data rate?

The answer of FireWire is elegantly simple:

If a data signal cannot be repeated by some port, then it will not be repeated.

This means that 1394 nodes don't always repeat all signals, but:

All 1394 nodes always repeat all signals that they are capable of repeating to
those ports that are capable of repeating them.

Let us go back yet again to another of our previous examples, where we had a mixed 1394a
and 1394b bus and see some of the implications of the above:

Green links indicate connections that use 1394b signaling and blue indicates connections that
use 1394a signaling. Thin links indicate S400 speed and thick links indicate S800 speed.
Yellow nodes are 1394b nodes (capable of 1394a and 1394b signaling) and white nodes are
1394a nodes (only capable of 1394a signaling).

Node 15 is drawn in blue to help us identify the local node (there might be multiple PCs on
the bus), but it is a 1394b node. Why? Well, it has a 1394b connection to node 14, so it is
capable of 1394b signaling, thus it is a 1394b node.

The connection between nodes 15 and 8 is a 1394a connection since node 8 is a 1394a node,
most likely with a 6-to-9 cable from a 9-pin bilingual port, but could also be a 6-to-6 cable
from a 6-pin port on node 15.

When the camera at node 10 sends a packet at S800, this packet will get repeated on the cable
through nodes 9, 14, 13, 12, 11 and 15 but at that point it will not be repeated further. This
means that if the camera of node 10 wanted to send a packet to the disk at node 2, and sends
that packet at S800, then the packet will not reach its destination.

Technically speaking "Node 2 is unreachable at S800 from node 10".

39
 Copyright © 2010, 1394 Trade Association. All rights reserved.

If the camera at node 10 wants to communicate with node 2, it must send the data packet at
the S400 data rate (or slower).

This is one of the major complexities with 1394 software. Using the topology information
provided by the 1394 bus (the same information that the program above used to draw the
1394 bus topology) the software may calculate the so called "path-speed table" (or Speed
Map). This is a table/matrix that shows the maximum data rate that any node can use to reach
any other node. Alternatively, the software may "try & see", which means to make an attempt
to communicate with each device at the maximum speed, and then successively the lower
rates, until it succeeds at some rate.

Additionally, depending on the transmission speed, there are limitations on the maximum size
of data packets. So if a node needs to send a "big" packet, a packet with a size that requires
S800, to a node that is only reachable in S400, then sending this packet is impossible.

It is the responsibility of the designers of 1394-based systems to ensure that the system
components (1394 nodes) are connected to each other in such a topology that permits
operation without problems of this sort.

The reason that the designers of the 1394 protocol decided not to repeat higher rate traffic into
lower rate links may not be immediately obvious.

Suppose that a node sends a small S800 packet, a 16-byte packet, to another node. The packet
is small enough to fit in an S400 link, so why not "translate" (downgrade) this packet to S400
and "repeat" it over the S400 links too?

The answer is that "transmission rate" equals "transmission time". A 16-byte S800 packet
takes 16*8b/800Mbps to transmit (or cross an S800 link). If it is transmitted at S400 it takes
16*8b/400Mbps, which is easy to see that is exactly the double amount of time.

If this was permitted, then the same packet would take different amounts of time to propagate
on different portions of the bus, which would make timing sensitive operations like bus
arbitration exceedingly complex.

So the designers of FireWire preferred the simpler electrical solution (same transmission rate
everywhere) over the software complexity of calculating path-speed tables. And in any case,
arbitrary arrangements of FireWire devices only occur in end-user scenarios and usually end
users don't have that many devices. In complex industrial systems, the system designers set up
the 1394 bus in such ways as to minimize or eliminate such issues.

40
 Copyright © 2010, 1394 Trade Association. All rights reserved.

1394 Addressing Model
From 1394-2008 annex Q3:

Q.3 Addressing
The serial bus follows the CSR architecture for 64-bit fixed addressing, where the upper
16 bits of each address represent the node_ID. This provides address space for up to 64
k nodes.
The serial bus divides the node_ID into two smaller fields: the higher order 10 bits
specify a bus_ID and lower order 6 bits specify a physical_ID. Each of the fields
reserves the value of all “l”s for special purposes, so this addressing scheme provides
for 1023 buses, each with 63 independently addressable nodes.

FireWire follows the command and status register (CSR) architecture of IEEE Standard 1212-
2001. According to this standard, the address space of the bus is a 64-bit memory space.
Doing actions on this bus consists (conceptually) of accessing "memory locations" in this
64-bit address space. The memory address specified somehow translates (maps) initially to
one of the nodes in the bus and then to some CSR register "inside" that node.

So, this 64-bit address identifies both the node and some "logical unit" inside the node (the
unit that will handle the requested action on this memory address). This implies that the 64-bit
memory address is partitioned in two parts, the first being something akin to the node's
"external address" (how it is known to the rest of the bus) and the second being an "internal
address" which only has meaning "inside" the node.

This concept is very similar to the TCP/IP protocol: The IP address is the "external address"
while the TCP/UDP port is the "internal address", which identifies which of all the software
modules inside the PC should get hold of an incoming packet.

FireWire uses the high 16 bits of the 64-bit address as the "external address", while the rest 48
bits of the address identify the "internal address" within the node.

The "external address" of a 1394 node on the 1394 bus is called the Node ID. The Node ID is
16 bits in size and is further divided in two parts, the 10-bit Bus ID and the 6-bit Physical ID.

The 10 bits for the Bus ID provide for 1024 possible values. One of those values (all 1s, 1023,
0x3FF) is reserved as having a special meaning. It identifies the "Local 1394 Bus" and is also
called the "Local Bus ID".

To understand the meaning of a "Bus ID" we must briefly mention 1394 bridges. The IEEE
1394.1 standard provides support for "1394 bridges", that is devices that can help two or more
independent 1394 buses communicate with each other. In such a scenario, these buses would
have different Bus IDs. Traffic that uses the local Bus ID is intended for the "local" bus and
thus ignored by the 1394 bridge. For all traffic that does not have the Local Bus ID, a bridge
is supposed to examine the Bus ID value and forward (retransmit) the packet to the
destination 1394 bus (or towards the destination bus).

This is packet forwarding, not packet repeating. The bridge is supposed to receive the packet
into a buffer, decide which bus to forward it to, then arbitrate on that bus and retransmit the
packet. So, the two buses are totally independent of one another.

41
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Theoretically one can build a whole complex network of 1394 buses interconnected by 1394
bridges as shown in the diagram below:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 1.1)

Since such big topologies with multiple buses are possible, it is only reasonable to expect that
each bus should have its own ID, so that the bus bridges can forward traffic as appropriate.
Hence the 10-bit Bus ID within the 16-bit Node ID.

In practice there are no 1394 bridges at this time, as the attempt to create a working standard
for their operation has proven exceedingly complex and at the same time the "market" could
do just fine without bus bridges. As a result a FireWire bridge standard exists but nobody paid
for a bridge device to be made.

As a result, in 99.99…9% of the cases, all the traffic on FireWire buses uses the local Bus ID.
There are some interesting tricks that can be performed by changing the Bus ID of some
nodes on the bus (but not all nodes) which accounts for the remaining 0.00…01%.

The 6-bit physical ID is a far more interesting topic. 6 bits yield 64 possible values, of which
the value 63 (all ones) is reserved to mean "broadcast".

However, the interesting fact about physical IDs is that they do not remain constant over time.
As the bus is reconfigured (devices plugged in or unplugged) the physical IDs get updated
accordingly.

This "Plug'n'Play" trick is at the same time one of the major strengths and troubles of
FireWire. You can plug any device anywhere on the 1394 bus, and the bus will reconfigure
automatically (create a new tree topology) and assign physical IDs to devices. No human
intervention needed!!!

That is very sweet at the hardware level, however at the software level it is not so easy to deal
with devices whose physical address might change any time.

More details on this automatic bus reconfiguration will be given later in this document.

42
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The following diagram from the 1394-2008 standard describes the 1394 memory model
addressing in a nutshell, while also showing the further partitioning of the internal 48-bit
address space into "initial memory space", "private space" and "register space":

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure Q.3)

Size Notation & Endianess
The following are referenced from 1394-2008 paragraph 1.5.3:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Table 1.1)

The terms in the last column are the ones used by the 1394 standard and the ones that will be
used in this document further on.

43
 Copyright © 2010, 1394 Trade Association. All rights reserved.

A related very important issue has to do with byte Endianess (little endian versus big endian):

The serial bus uses big-endian ordering for byte addresses within a quadlet and quadlet
addresses within an octlet. For 32-bit quadlet registers, byte 0 is always the most
significant byte of the register. For a 64-bit quadlet-register pair, the first quadlet is
always the most significant. The field on the left (most significant) is transmitted first;
within a field, the most significant bit (MSB), i.e., the leftmost, is also transmitted first.
This ordering convention is illustrated in Figure 1-3.

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 1.3)

The big endian convention is basically a "byte numbering" convention so that all nodes on the
1394 bus can have the same interpretation of the data packets that are sent or received.
Internally a node may use a little endian processor; however the data packets that this node
transmits must follow the big endian standard so that all other nodes can understand them
(interoperability).

In the same vein, the 1394 standard in paragraph 1.5.5 defines a "data packet" as follows:

Serial bus packets consist of a sequence of quadlets.

Of course there are many different specific types of packets, but according to this definition
any 1394 data packet is a sequence of quadlets as show below, which means of course that its
size is always a multiple of 4 bytes:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 1.4)

44
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Bus Reset & 1394 Bus Self-Configuration
The "Bus Reset" is such a fundamental feature of the 1394 bus that a concise definition for it
is not included in the standard's glossary of terms.

So the author will provide a non-official definition:

A bus reset is an event that interrupts the normal operation of the 1394 bus and
forces all nodes into a special state that clears the previous topology information
and starts a new phase of bus configuration. Once bus configuration has
completed, normal bus operations can resume.

Technically there are two types of bus resets:

1. Long Bus Reset: Takes longer to complete the bus reset phase (before
reconfiguration starts) and might corrupt data packets.

2. Short Bus Reset: This is also known as "arbitrated bus reset" because the initiator
arbitrates for the bus (as if to transmit a packet) and then initiates the bus reset. It is
much faster and does not corrupt any data packets because by definition no one else
was transmitting at that time.

It is easy to figure out that long bus resets happen when a node is added to or removed from
the 1394 bus. Obviously a device that has not yet been added to the bus cannot arbitrate and
request a short bus reset. The same goes for device removal; the device cannot possibly know
that an outside agent (usually a human) is about to unplug it. It is the physical unplugging
itself that causes the bus reset.

Short bus resets are usually used by software modules that want to reconfigure the bus in
special ways (e.g. establish a new root). Whenever possible software should always initiate a
short bus reset and avoid initiating long bus resets.

According to 1394-2008 annex H the bus configuration timeline after a bus reset is as follows:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure H.1)

45
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Before the "Tree Identify" phase, there is another brief phase (not shown) called the
"Bus Initialization" phase. In that phase every node determines the connection status of its
ports.

The "Tree Identify" phase is described by the 1394-2008 standard as follows:

After a bus initialization process, the tree identify process translates the general network
topology into a tree, where one node is designated a root and all of the physical
connections have a direction associated with them pointing towards the root node. The
direction is set by labeling each connected port as a “parent” (connected to a node
closer to the root) or “child” port (connected to a node further from the root).

That means that the "Tree Identify" phase is where nodes are organized into a hierarchy with
the root node at the top (a node only with children).

The "Self Identify" phase is the phase where the physical IDs are assigned to each node in a
deterministic manner. This means that once the tree has been identified, there is only one way
to assign the physical IDs.
We can roughly think that the on a given bus the physical ID assignments depend on the root.
If node A is the root on this bus, then there is only one way to assign the physical IDs. If the
root is changed to node B then there will be a different way, but if node A is restored as root
(through software) then the original assignment will come into place. As long as the physical
topology is not changed (no nodes are added or removed), if node A is the root then the same
physical ID assignment will be performed.

Technically the "Self Identify" phase is separate from "Tree Identify" because a new process
(algorithm) is executed to complete this deterministic assignment of physical ID.

 After this phase, normal bus operations can resume (bus arbitration and packet transmission).
Parts of these operations are also depicted in the diagram above, however these tasks involve
normal traffic. The "Tree Identify" and "Self Identify" phases are performed through special
signal exchanges.

So, to sum things up:

• A bus reset occurs whenever there is a change in the physical topology of the 1394
bus (1394 nodes get connected or disconnected) or software decides to logically
reconfigure the topology of the existing bus (new root, new gap_count, clear bus error,
etc).

• The bus reset interrupts the normal operation of the bus and forces every node to
enter a "special" reconfiguration mode.

• Immediately after the bus reset follows the "Bus Initialization" phase, where every
device determines again which of its ports are connected and which are not.

• Then comes the "Tree Identify" stage where the parent-child relationships are
determined, building a hierarchical bus topology. At the end of this phase all
connected ports know whether they are connected to a "child node" or a "parent
node". The "root node" is also determined and is the only node whose ports are only
connected to "child nodes".

• Next is the "Self Identify" phase where the physical IDs are assigned to each node.
• Normal bus operation (data packet exchange) can now commence again.

46
 Copyright © 2010, 1394 Trade Association. All rights reserved.

A little detail that should also be made clear is that technically saying "connect a device to the
bus" or "remove a device from the bus" may be inaccurate. You can also connect another
1394 bus segment to the bus (add a whole bunch of devices already connected to one another),
or remove a whole segment from the bus (remove a bunch of devices at the same time). Both
of these events will generate only one bus reset, not one bus reset per connected or
disconnected device.

Technically a "topology change" means:

The connection state of any port of the 1394 bus has changed.

It is such a "port connection state" change that triggers a bus reset.

For example it is possible through software to "disable" a connected 1394 port. This means
that the port is still "physically connected" (the cable was not removed) but "logically
disconnected" (it broke the electrical connection with the port at the other end of the cable).
Such an event is a "port connection state" change, so a bus reset will be initiated by 1394.

The distinction between long and short bus resets is not the only one. Bus resets are also
characterized as "hard" and "soft":

• Hard Bus Reset: Initiated by a change in port connection state. All hard bus resets
are long bus resets.

• Soft Bus Reset: Initiated by software (for some reason). Can be short or long.

Hard Bus Resets are easy to understand. But, why are Soft Bus Resets needed?

Soft Bus Resets exist for a number of reasons. The most prominent of those reasons is so that
software can designate which 1394 node is going to be the root node in the bus topology.

In the normal operation of the post Bus-Reset phases, the node that will end up being root is
selected non-deterministically. To put it in a cruder manner, the root node is selected
randomly. This does not mean that a random process is followed. It means that when a bus
reset happens (a) all nodes have equal probability of becoming the root node and (b) there is
practically no way to guess who will actually become the root.

However, for reasons described in following chapters, software modules may desire that a
specific node becomes the root. So 1394 provides a way to change the "equal probability" of
all nodes and favor a specific node. This is done by transmitting a special data packet. This
data packet informs the target node that when the next bus reset happens it should "bend the
rules". It also informs all other nodes that somebody else is going to bend the rules so they
better behave "by the rules".

The nodes get "informed" but for the topology to actually change a bus reset has to happen.
So the software initiates a Soft Bus Reset and the task of assigning a specific node as root gets
completed.

47
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Beta Loops & Redundancy
It has been mentioned earlier that the 1394 bus topology is a hierarchical tree with no circles
(loops). With 1394a-only buses (buses that contain only 1394a nodes) this is true at the
physical level. You cannot follow the cables around and end up where you started.

If a loop was introduced in a 1394a-only bus then the algorithm of the "Tree Identify" phase
would fall into an infinite loop, eventually timeout and generate a new bus reset. This would
repeat, causing an infinite sequence of bus resets until someone physically removed the loop.

The 1394b standard added a very powerful capability to FireWire. Now the presence of
physical loops is permitted! What happens is that during the "Bus Initialization" phase, the
1394b nodes on the bus detect the presence of the loops and logically "break" them. To
logically break a loop essentially means to "logically remove" one of the links that are part of
the loop; a link whose removal will "break" the loop.

The details of how are the loops detected and how the breaking link is selected are outside the
scope of this document. However the "breaking" of the link is not. Earlier we mentioned that
it is possible for software to disable a port and thus make it be logically disconnected,
although the actual cable is still connected.

Something similar is taking place in this case too. The 1394 bus automatically disables the
ports on the selected link so as to break the loop. No software intervention is required. It all
happens automatically in the special processing phases after the bus reset. This kind of port
disabling is called a "Loop-Disable".

What is even more amazing is the fact that multiple loops can be present at the same time.
1394 carefully selects and automatically breaks all appropriate links, so that the bus (a) has no
more loops and (b) all devices remain accessible.

All these are interesting, but the question is "why should we allow loops at all"? Is it so that if
a human error is committed in the configuration, we won't have the "infinite bus reset
sequence" problem?

It turns out that the reason for this feature is "redundancy".

The reason that system designers want to have loops in a 1394 bus is their desire to have more
than one physical "cable paths" between some devices, so if there is a hardware problem on
one cable path then the devices will still be accessible through the alternate cable path(s).

 1394 does some extra magic here. Whenever a bus reset occurs it recalculates all the loops
and if there has been a connectivity change that will "break" the bus in two pieces, then it
automatically reactivates the appropriate loop-disabled ports so as to bring the bus back into
one piece.

This way 1394b offers redundancy, which is a significant advantage compared to other
competitive technologies.

1394 Protocol Layering
The 1394 protocol is a protocol for data transmission, so naturally it has been defined in a
layered fashion (a stack of layers). The diagram below comes from the 1394-2008 standard
and shows all the defined layers of the "Serial Bus Protocol" (SBP) stack:

48
 Copyright © 2010, 1394 Trade Association. All rights reserved.

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure Q.4)

Actually the "Serial Bus Management" layer sits on the top of the hierarchy, but because it
uses services from all layers below it, it is drawn on the side.
Of the layers shown above, the Physical and the Link Layer are usually implemented in
hardware and referred to as the "PHY chip" (or simply the PHY) and the "Link chip" (or
simply the LINK).
In most implementations until a few years ago, the PHY and the LINK were implemented as
separate chips on the boards, but in the recent years several chip makers have come up with
integrated PHY+LINK chips that include both functionalities in one piece of silicon. However,
this is an implementation detail. The PHY and the LINK perform totally different functions,
so they are being discussed as different units. For example, it is the PHY that controls the
ports of a 1394 node, determines port connection states, makes arbitration requests, repeats all
traffic, etc.
The "Transaction Layer" and the "Serial Bus Management" (SBM) layer are mostly
implemented in software (or firmware) inside the 1394 nodes that support them. Not all nodes
require all layers. For example a repeater only has a PHY but no LINK. Devices like cameras
also have a LINK and Transaction layers, but usually no SBM layer. The SBM layer is
usually implemented in computers (PCs).

1394 Bus Packets
We have already stated the basic definition of a 1394 data packet in an earlier paragraph:

Serial bus packets consist of a sequence of quadlets.

49
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Any 1394 data packet is a sequence of quadlets as show below, which means of course that its
size is always a multiple of 4 bytes:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 1-4)

However, there are many different types of data packets, depending on their characteristics
and purpose. The full hierarchy is shown below in a diagram from the 1394-2008 standard:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 6-1)

At the first level of the hierarchy there are three types of packets:

1. PHY Packets
These packets are exactly 2 quadlets (8 bytes) in size and are not acknowledged by
recipients. As their name implies, they were originally intended for sending
information, sending commands and getting responses to and from the PHY chips of
the nodes on the 1394 bus. In these packets the two quadlets are not independent of
one another. The second quadlet is the binary inverse of the first (acting like a
checksum).
However, PHY packets were later "overloaded", which means that they were put to a
new use. The VersaPHY protocol defines a new subset of PHY packets by using

50
 Copyright © 2010, 1394 Trade Association. All rights reserved.

some reserved fields. In these packets both quadlets contain information (so they are
not the inverse of one another).

2. Acknowledge Packet
According to 1394-2008 paragraph 3.1.5 an acknowledge packet is "An 8-bit packet
that may be transmitted in response to the receipt of a primary packet".

3. Primary Packet
According to 1394-2008 paragraph 6.2.1 "A primary packet is distinguished from an
acknowledge packet or a PHY packet by its length and/or encoding. The length of a
primary packet shall be at least two quadlets (a zero-data isochronous packet). A
primary packet shall consist of a packet header, and it may also include a data block".

Granted to say that the definition of the primary packet given above is a little obscure, so it
would serve quite as well to think of primary packets as "any packet that is not a PHY packet
or an acknowledge".

Also note that in the definition of acknowledge packets, they are "optional". This means that
not every type of primary packet gets an acknowledge when it gets received.

Once we are past the first level categorization of packet types we can move to the second
level, which distinguishes primary packets between "asynchronous packets" and "isochronous
packets".

The 1394-2008 standard states the following in paragraph 6.2.1:

Two basic varieties of primary packet are defined for the serial bus: the asynchronous
packet and the isochronous packet, which are distinguishable by the transaction code
value.

This simple statement of course does not reveal all the complexity, but tells us one important
thing:

From a "data" point of view asynchronous and isochronous packets are the same
thing: a 1394 data packet with a header and possibly a body. Isochronous
packets just happen to use some specific transaction code value (10) in their
headers, while asynchronous packets use other values.

This means that there is nothing intrinsically remarkable about isochronous data packets. It is
the special way in which they get handled that makes "isochronous traffic" such a special
feature of FireWire. That will be explained in detail in later paragraphs.

Before we move further we must step back one moment and clear out the terminology. In
computer software literature the term "asynchronous" appears very often, together with its
opposite term which is "synchronous". However FireWire uses the terms "asynchronous" as
opposed to "isochronous" to distinguish the two basic types of its primary packets.

So what is the difference between "asynchronous", "synchronous" and "isochronous"?
Although the difference may be apparent to a native Greek speaker (all these words originate
from the Greek words "ασύγχρονο", "σύγχρονο", "ισόχρονο"), or to someone who has been
immersed for years in the details of FireWire, the author has noticed some considerable
confusion over them in the past in people that are not so familiar with FireWire.

51
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Let us start with the definitions of "Asynchronous" versus "Synchronous" in computer
literature, which is basically a characterization for I/O operations:

• Asynchronous I/O (or non-blocking I/O) is a form of input/output processing that
permits other processing to continue before the I/O operation has finished.

• Synchronous I/O (or blocking I/O) is a form of input/output processing where the
caller waits for the operation to finish before proceeding with further processing.

The Greek word "Asynchronous" is used to describe "two or more things that are
independently happening (evolving) at the same time, without paying any attention to one
another", which is the reason why they are considered independent.

I order some pizza and continue doing my work, while the pizza is being prepared, cooked
and finally delivered to me. My work and the pizza preparation are "asynchronous" processes.

In that sense the term "Asynchronous I/O" is a valid use of the language word
"Asynchronous". The program kicks off some I/O operation, does other things in the
meanwhile, and at some moment picks up the completed I/O operation.

However the Greek word "Synchronous" is used to describe "things that happen in the same
time in a fully time dependent manner".

When a ballet is giving a performance the dancers are performing in a synchronous manner.
Some of them do exactly the same moves at exactly the same times, while others that run
around and do "solo" moves are fully aware of the time dependencies and know for example
that they have to finish some part of their move in 5 beats of the music playing in the
background. All the dancers are "synchronized" (they better be), they act in a "synchronous"
fashion.

So to call "Blocking I/O" as "Synchronous I/O" is a major misnomer (to give the wrong name
to something). To wait until something happens does not make you "synchronous" with that
thing. To wait until something happens does not mean that you sit idle doing nothing in the
meanwhile. In the asynchronous I/O case the program also "waits" for the I/O to finish (it
cannot draw the image onscreen until the image data has been read from the file). The
difference is that it does something else in the meanwhile instead of sitting idle.

Very few things in 1394 technology are "synchronous" and they all have to do with the low
level operation of the chips and the cable signals that necessarily have to be synchronized. To
put it more emphatically:

There is no such thing as "synchronous" data traffic in FireWire.

As we saw above, to describe some process as synchronous or asynchronous there must be
more than one elements involved in a time relationship. Something may be synchronous or
asynchronous with regards to something else.

Thus the 1394 term of "Asynchronous Packet" does not mean that the packet by itself is
"asynchronous" but rather that the packet is of the "Asynchronous Traffic Type". Similarly an
"Isochronous Packet" indicates a packet of the "Isochronous Traffic Type".

52
 Copyright © 2010, 1394 Trade Association. All rights reserved.

So, in the 1394 world, "Asynchronous" is the term selected for "other than Isochronous". The
characteristics of Asynchronous and Isochronous traffic are described in the next paragraphs.

The 1394 Cycle - Part 1
Let us now see the definition of the term "Isochronous" provided by the 1394-2008 standard
in paragraph 3.1.65:

Uniform in time (i.e. having equal duration) and recurring at regular intervals.

This definition is extremely accurate with regards to the meaning of the respective Greek
word. In 1394 too, isochronous traffic is traffic that occurs at regular time intervals and
(usually) has equal duration (within each interval).

Now we are better prepared for the more technical descriptions of the 1394 standard:

• 3.1.15 asynchronous packet: A primary packet transmitted in accordance with asynchronous
arbitration rules (outside of the isochronous period).

• 3.1.66 isochronous interval: A period that begins after a cycle start packet is sent and ends
with a subaction indication. During an isochronous interval, only isochronous subactions may
occur. An isochronous interval begins, on average, every 125 microseconds.

• 3.1.68 isochronous subaction: Within the isochronous interval, either a concatenated packet
or a packet and the gap that preceded it.

What the above paragraphs try to explain is that there is something called "isochronous
interval" or "isochronous period". Anything transmitted outside of this time period is an
asynchronous packet. Anything transmitted during this period is an isochronous packet.

We can picture this as the 1394 bus alternating between the isochronous and asynchronous
period once every 125 microseconds, as shown below:

The isochronous period ends with some mysterious thing called a "Subaction Indication" but
we don't need to analyze this further. When the isochronous period ends, the asynchronous
period starts. Then, approximately 125 microseconds after the beginning of the previous
isochronous period a "Cycle Start Event" will happen (in the form of a Cycle Start Packet)
and a new isochronous period will begin.

To be precise, the 1394 protocol rules in essence say that isochronous packets can only be
transmitted inside the isochronous period. When the isochronous period ends, then

Cycle Start Event

53
 Copyright © 2010, 1394 Trade Association. All rights reserved.

asynchronous packets may be transmitted, until the 125 microseconds elapse and the next
"cycle" begins (the next isochronous period starts).

For example, you cannot take an asynchronous packet (transaction code value different than
10) and force it to get transmitted during the isochronous period. The 1394 chip will refuse to
transmit it in that period and instead wait for the next asynchronous period to start.

The diagram also illustrates one of the fundamental notions of FireWire: the so called "1394
Cycle", which is a duration of 125 microseconds on average. Note that the "1394 cycle" is not
the same thing as the "isochronous interval" (or "isochronous period"). Instead:

(Isochronous Period) + (Asynchronous Period) = "1394 Cycle" ≈ 125 microseconds

A 1394 cycle starts with a "Cycle Start Event" which appears on the 1394 bus as a data packet
that is called the "Cycle Start Packet". The 1394 cycle ends when the next cycle start packet
gets transmitted and a new 1394 cycle starts.

The 1394 Cycle - Part 2: Cycle Start Packets & the Cycle Master
A closer examination of diagram 6.1 (shown several pages earlier) shows that the Cycle Start
packet is a primary packet and specifically one of the asynchronous type. The fact that the
"Cycle Start" is a normal data packet is very important in understanding the way 1394
isochronous and asynchronous traffic works. The Cycle Start packet is a normal data packet
and it gets transmitted like all other data packets. It is not, for example, any special electrical
signal that acts as an "electronic clock".

The following diagram from the 1394-2008 standard shows the layout of a Cycle Start packet
which is composed of five quadlets:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 6-10)

The tcode field shall have a value of 8. The source_ID field shall be the Node ID of the node
that transmits the Cycle Start packet. The cycle_time field shall contain the contents of the
cycle master’s CYCLE_TIME register.

Since the Cycle Start packet is a data packet, then one of the 1394 nodes on the bus must have
transmitted it. In 1394 terminology, the node that transmits the Cycle Start packets is called
the "Cycle Master". There can only be one Cycle Master at any point in time. Only one node
is sending the Cycle Start packets.

54
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The Cycle Master node is determined immediately after a bus reset and it remains in that
"role" until the next bus reset. At that point a new Cycle Master might be selected, which will
be the one transmitting the Cycle Start packets until the next bus reset, etc.

The following fact is worth stressing out:

Transmission of the Cycle Start packets is optional.

A software module can request from the Cycle Master to cease the transmission of the Cycle
Start packets. What happens then?

If we trace back to the definitions given earlier, the Isochronous Interval starts with a Cycle
Start packet and inside a cycle there is the Isochronous Period and the Asynchronous Period.
If there is no Cycle Start packet then there is no Isochronous Period, there are no cycles, and
the 1394 bus operates in the asynchronous period all the time.

Not all systems/applications require data traffic of the isochronous type, so it is quite possible
to "turn off" the Cycle Start packets and only use asynchronous traffic.

Turning off Cycle Start packets in such cases also yields a performance benefit in the order of
5% which can look quite surprising if we look at the details! The Cycle Start packets are 20
bytes each, transmitted once every 125 microseconds (8000 per second) which means that the
percentage of bus bandwidth taken by them is:

((20*8000*8) bits/sec) / 800Mbps = 0.15%

It is beyond the scope of this document to explain how the removal of this 0.15% of traffic
can yield a 5% performance gain, but suffice it to say that some applications need that extra
gain, so it is not unreasonable or uncommon to turn off Cycle Start packets.

We stated earlier that after the bus reset the Cycle Master has to be determined (decided
upon). Why is this necessary? Are there different "skill levels" in candidate Cycle Masters?

The answer is yes, there are two skill levels: A node either can or cannot act as a Cycle
Master. Not all 1394 nodes are capable of generating the Cycle Start packets so such nodes
cannot possibly act as Cycle Masters. Generating the Cycle Start packets requires some extra
circuitry and possibly firmware support, so some devices choose to not provide this capability
and let some other 1394 node take on the Cycle Master task.

"Cycle Master Capable": A 1394 node that is capable of generating Cycle Start packets.

Additionally, only the root node in the topology can perform the duty of the Cycle Master. If
the root node in a 1394 bus is Cycle Master Capable, then the bus configuration is called
"Isochronous Capable". The exact same bus with another root node that is not Cycle Master
Capable will not be Isochronous Capable.

In contrast a single 1394 node is called "Isochronous Capable" if it can transmit isochronous
traffic. This means that to have isochronous traffic on a 1394 bus, we need:

1. Isochronous Capable nodes on the bus.
2. The bus configured with a Cycle Master Capable node as the root node.
3. Transmission of Cycle Start packets must be enabled on the Cycle Master.

55
 Copyright © 2010, 1394 Trade Association. All rights reserved.

As described in earlier paragraphs, if the software wants to work with isochronous traffic and
it detects that the current root is not Cycle Master Capable, then it will locate one Cycle
Master Capable node, designate it as the next root and initiate a short bus reset.

In practice, most applications require isochronous traffic, so 1394 software usually
manipulates the topology of the 1394 bus (using short bus resets) so that a "Cycle Master
Capable" node ends up as the root node in the topology.

All 1394 host adapters are Cycle Master Capable, which means that the "PC device" is Cycle
Master Capable, so in most 1394 systems a PC is the root device (namely its 1394 host
adapter). However, this is just a convenience and a practical coincidence. There is no rule that
says a PC must be the root of the 1394 bus in order to have isochronous traffic.

56
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The 1394 Cycle - Part 3: Cycle Structure & Cycle Drift
After having introduced all these terms and rules of the 1394 standard, it is time to examine
one interesting diagram from the 1394-2008 standard:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure Q.16)

This diagram possibly contains way too much information for a single drawing, but we will
try to explain it piece by piece.

The first thing that we should pay attention to is the "cycle synch" arrows. Internally every
Cycle Master node has a very accurate clock that generates a "cycle synch" signal 8000 times
every second (once every 125 microseconds). This indicates to the 1394 chips on the node
that they must transmit a Cycle Start packet.

But we already said that the Cycle Start packet is a normal packet. What happens if some
other primary packet is getting transmitted at that time? In that case the Cycle Start packet
gets delayed. This is the reason why all previous definitions about the cycle duration states
things like "approximately" or "on average" together with the 125 microsecond duration.

The way that the 1394 protocol works at lower level makes the Cycle Start packet a kind of
"high priority packet". This means that as soon as the transmission of the current packet ends
then no other packet will get transmitted, but the "awaiting" Cycle Start packet will take
priority instead.

In the diagram above we can see that in both cycle synch events, there were small delays in
the transmission of the Cycle Start packet. If this fact was left untreated, then this "logical"
clock of the 1394 bus would slowly drift. For example after 24 hours of operation one would
expect the number of cycles to be (24h/125usec) but we would find that there actually were
much fewer cycles in practice.

This accumulating "cycle drift" would be a serious problem for many applications, so the
1394 standard does some extra magic here. The 1394 chips in the Cycle Master keep track of
these mini-drifts and "correct them" very quickly and very naturally as we will see.

This is done by using the Cycle Synch events as the compass. The Cycle Synch events come
from a real hardware clock and they never drift. Whenever the Cycle Synch event occurs, it
practically tells the 1394 chip "Transmit a Cycle Start packet as soon as possible".

57
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Let us start from time point zero, and suppose the first cycle takes 145 microseconds because
the second Cycle Start packet was delayed for 20 microseconds by traffic. The next cycle
synch will still occur at time point 250 microseconds. Suppose again that there was traffic and
the Cycle Start got delayed 5 microseconds, so it got transmitted at time point 255
microseconds. (255-145)=110, so the second cycle lasted only 110 microseconds instead of
125 and a 15 microsecond correction was made (of the original 20). The next cycle synch is at
375 microseconds. (375-255) = 120, which means that if there is no traffic the remaining 5
microseconds will be adjusted for.

If you think about the above, they mean that no matter how heavy the traffic, no matter how
long the system runs, each and every Cycle Start packet will be at worse within a 40-50
microseconds time distance from where it should be. There is no "delay accumulation" and
thus no "clock drift". Some cycles might be a little longer than 125 microseconds, some a
little shorter, but on average the cycles last 125 microseconds and each and every second has
8000 cycles on average.

To see why this is true, consider the following "data":

• If I monitor the 1394 bus for exactly 24 hours after the first Cycle Start packet, how
many cycle packets will I see? The answer is either (24*3600*8000) or
(24*3600*8000)-1. Maybe the very last cycle was a little off, so my observation
registered one packet less.
Dividing either number with 24*3600 the results are very close to 8000 (within
1/(24*3600)).

• If I monitor the 1394 bus for exactly 5000 hours, how many cycles will I see? The
answer is either (5000*3600*8000) or (5000*3600*8000)-1. Dividing either number
with 5000 the results are even closer to 8000.

The "cycle synch" events are the real "hardware clock". The Cycle Start packets are a
"software clock", a manifestation of the hardware clock on the 1394 bus.

58
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The 1394 Cycle - Part 4: Isochronous & Asynchronous Traffic
Now let us review the remaining parts of the diagram so that we can finally describe
Isochronous and Asynchronous traffic into more detail. The diagram is repeated below for
ease of reference.

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure Q.16)

We explained the significance of the cycle synch events in the previous paragraph. We can
see that "cycle #m" started with a small delay (x) and "cycle #m+1" with another delay.
However we explained how these delays get corrected, so they never accumulate.

The "gaps" shown around the diagram are durations of "bus idle time". According to the 1394
rules, between isochronous packets either no gap appears (concatenated packets) or a small
isochronous gap appears. When the last node that had an isochronous packet to transmit is
finished, then everyone is "waiting" for the next isochronous packet but there is none. The bus
stays idle a little longer (this is called a subaction gap) and the 1394 chips understand that the
isochronous period is over, so they proceed with the asynchronous traffic.

All the square boxes in the diagram represent data packets. We can see the "Cycle Start"
packet at the beginning of each cycle. The boxes labeled "ch J", …, "ch N" are isochronous
packets, where "ch" stands for "channel". "Packet B" and "Packet C" are asynchronous
packets that happen to also have an acknowledgement.

This brings us to one significant difference between isochronous and asynchronous packets:

• Asynchronous packets have a target physical ID in their packet header. This is either
a specific 1394 node, or all the nodes (broadcast packet when Physical ID is 63).
An asynchronous packet is either "addressed" to a specific 1394 node or to everyone.

• Isochronous packets do not have a target physical ID in their packet header. Instead
they have an "Isochronous Channel Number" which can take values from 0 to 63.
The channel number acts as a "logical label" to this packet in the same way that
"CNN" acts as a label for a particular TV broadcasting frequency.

Let us review the packet formats of Isochronous and Asynchronous packets as described in
the 1394 standard:

59
 Copyright © 2010, 1394 Trade Association. All rights reserved.

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 6-17)

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 6-3)

The Isochronous packet format diagram is straight forward to understand because there is
exactly one type of isochronous packet. There are many types of asynchronous packets and
figure 6.3 shows the generic format, with some hints about which parts are optional.

We must make sure now that no confusion creeps in:

• All packets, asynchronous and isochronous get propagated across the whole 1394 bus
(provided they can be repeated everywhere).

• The physical ID in the header of an asynchronous packet does not make this packet
follow one particular "route" or another. All 1394 nodes "listen" to the traffic that
“passes” on the 1394 bus and when they “sense” a packet with their own physical ID
(or the broadcast) then they "pick it up", i.e. they decide to receive it.

60
 Copyright © 2010, 1394 Trade Association. All rights reserved.

• A 1394 node can only receive the asynchronous packets with its own physical ID (or
the broadcast ID). A node cannot "eavesdrop" on the traffic of another node. Only
highly specialized and very expensive devices called "1394 bus analyzers" can
receive all asynchronous packets.

• Asynchronous packets may be acknowledged by their receiver.
• In contrast, isochronous packets do not get specifically addressed to any node.
• Any isochronous capable 1394 node can receive any isochronous packet (from any

channel).
• Multiple nodes can receive isochronous packets from the same channel number.
• Isochronous packets never get acknowledged by their receivers.
• An isochronous channel number can only appear once in every cycle.
• A 1394 node may transmit multiple isochronous packets in every cycle, but they have

to use different channel numbers.

The Essence of Isochronous Traffic
After having listed all these technical definitions, rules and their implications we are getting
closer to understanding the big picture. So it is time to move to a higher level and work our
way down until we meet the amazing world of 1394 again.

When I am copying a data file from one computer to another, no one "cares" exactly how long
this operation will take. As long as it is not extremely slow, no one "cares" much. The file
will end up on the second computer anyway, its data will be valid; a couple of milliseconds
more or less don't make any difference. However we do "care" that all the data will be copied
and that it will be valid.

In contrast, when playing back some music (an audio stream) everybody cares that the "next"
pieces of the song are read from the file in time and that they are also sent to the audio device
in a timely fashion. If some of the audio data is "bad" we will hear it. The slightest delay or
error results in an audible discrepancy. The visual discrepancies of video streams are not so
easy to detect for the human eye. If a frame is missed, we never notice. If 3-4 frames in a row
are missed then we might notice. If a portion of some frame was not properly decoded (or the
image data was bad) we will probably not notice at all.

As we can see, these are different "types of data" with different requirements. Information
like an audio or video stream are generically called "streaming data".

Apart from timely delivery (knowing that the needed data will have been received when it is
time to "render" it) there is another equally important issue with "streaming data". This is the
"Rate of Delivery".

Suppose that you want to playback a 800MB MPG movie file whose duration is 1 hour. This
file is on your hard disk. You make a test copy of the file and it takes 10 seconds to complete.
Your computer is pretty fast; it can read and write all that data in just 10 seconds. You start to
playback the movie and the MPG is getting decoded and displayed with a modest 30% CPU
time. The computer is obviously fast enough, so why should it have a problem with
"streaming data" like your movie?

61
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The problem of course is that other devices might get involved, devices that have limited
resources, specifically limited memory buffers. You computer could possibly decode the
whole audio stream of that movie in 60 seconds, but that would generate audio data that are
200MB in size. You cannot send that 200MB to your audio device, because its memory
buffers can only hold 2 seconds worth of sound. And there starts the trouble.

Writing a software program that delivers streaming data to a hardware device at the
appropriate rate that the device can handle, without making timing mistakes ever, never being
early (the device is not ready yet), never being late (the device sits idle) is not such an easy
task as it might seem. Moreover, things are even more complex for "simple" devices that
generate "streaming data". They have to control their transmission rate too, or else they might
drive the receiver out of resources.

So streaming data present us with two major difficulties:

1. Data must never arrive late.
2. Data should not arrive too fast.

The 1394 bus protocol provides isochronous support in order to solve both of these problems
at the same time.

Suppose that we have an uncompressed video stream with the following characteristics:

• Image Size: 800x600
• Pixel Encoding (Color Depth) = 16-bits per pixel
• Frame Rate: 20 Frames per Second (fps)

Every image frame has 800x600=480000 pixels, at 2 bytes each it yields 960000 bytes per
frame. Every frame must get transmitted in 1/20th of a second, or every 8000/20 = 400 cycles.

Since we can transit only one isochronous packet per cycle (on a given channel number), we
must transmit 960000/400 = 2400 bytes in every cycle.

The camera then grabs one frame, "cuts" it in 400 packets of 2400 bytes each and asks the
1394 chip to transmit the packets on isochronous channel 8. That's all it takes to solve both
problems!

The camera has nothing more to worry about; it trusts the 1394 chip to do its work properly
and know that after 400 cycles that image has been transmitted, with a very stable rate (one
packet every cycle).

The receiver of the video stream is also happy with this scheme. For starters, it doesn't have to
allocate additional buffers in case data arrives faster than expected. The receiver knows the
exact data rate, so it can make the appropriate buffer arrangements. Additionally, the receiver
doesn't have to do any timing to display at the 20 fps rate. If some frames arrived early, then
the receiver would have to "delay" their display so that the video is smooth. But now the
receiver knows that frames are always on time and never early. The arrival of a new frame
also indicates that it is time to display that new frame.

So that is what happens with 1394 isochronous traffic. A device that wants to generate a
stream of data (whatever kind of data), selects a channel number, chops that data into packets

62
 Copyright © 2010, 1394 Trade Association. All rights reserved.

of the appropriate size and then leaves the dirty work to the 1394 chip, which will dutifully
transmit one of these packets on every cycle. The 1394 protocol guarantees to the chip that it
will certainly transmit one isochronous packet per cycle.

Of course, it is not required by 1394 nodes that send isochronous packets to use each and
every cycle. For example the 960000 bytes of the video frame in our previous example could
be packaged in packets of 3000 bytes, which would require 320 cycles to transmit a whole
frame. Then, the camera would instruct the 1394 chip to stay idle until an additional 80 cycles
elapse and then start with the next frame.

Isochronous Bandwidth
Obviously, the bandwidth of 1394 is not infinite, so some more protocol rules have to exist to
keep things in order. Please note, that these are "soft" rules; the 1394 standard describes them
but there is no hardware mechanism that enforces them. They are rules that all 1394 nodes
"agree to follow willingly":

• Every 1394 node that wants to transmit isochronous traffic must "reserve" (allocate) a
unique channel number (a channel that is not currently in use). This guarantees that
any channel number only appears once in every cycle.

• The isochronous period should not exceed 80% of the available bandwidth, which
means it should not exceed 80% of the 1394 cycle, so it should not exceed 100
microseconds in every cycle. These 100 microseconds are translated by the 1394
standard into "4915 bandwidth allocation units".

• Every 1394 node that wants to transmit isochronous traffic must "reserve" (allocate)
isochronous bandwidth by allocating "bandwidth allocation units". This is like
reserving a "time slot" of the desired duration within the isochronous period.

If all 1394 nodes follow these rules, then at least the 20% of the bus bandwidth will be
available for asynchronous traffic and the bus will operate without problems.

All that we described above often get summarized by saying that isochronous traffic is:

• Guaranteed Timing
Packets get certainly transmitted every 125 microseconds.

• Non Guaranteed Delivery
There are no acknowledgements so the sender cannot know if the receiver(s) actually
got the data. Incoming packets may get discarded because of FIFO errors.

• Unfair
Only those devices that have allocated bandwidth units are allowed to transmit.

Asynchronous Traffic
From a high level, asynchronous traffic has the opposite characteristics of isochronous:

• Guaranteed Delivery
In almost all cases an acknowledgement is sent back to the sender.

63
 Copyright © 2010, 1394 Trade Association. All rights reserved.

• Non Guaranteed Timing
Best-effort transmission is used for asynchronous traffic. The sender does not know
how "soon" the packet will be transmitted.

• Fair
All devices will eventually get to transmit.

An additional characteristic that asynchronous transmission has is "Fair Arbitration". Each
and every node will get equal "chance" to transmit its asynchronous traffic. In contrast,
isochronous transmission is not fair: The 1394 nodes that were quick enough to allocate the
available bandwidth allocation units first, are the only ones that are permitted to transmit
isochronous traffic.

As we saw earlier, a device like a camera usually prepares a set of isochronous packets and
then asks the chip to transmit them. The term used for this action is that "the isochronous
packets are queued for transmission".

A similar thing happens with asynchronous traffic. The sender wants to send a file to the
receiver (using some higher-level protocol like SBP2), so the sender possibly prepares many
asynchronous packets and queues them for asynchronous transmission.

What happens then is as follows:

1. The 1394 chip arbitrates for permission to transmit a single asynchronous packet
(which of course can only happen during the asynchronous period).

2. The 1394 chip wins arbitration (gets permission) and transmits the packet.
3. If there are more packets to send, then go to step 1.

Of course, there might be other nodes in the bus that have asynchronous traffic to transmit. So
the other nodes run the exact same procedure and the fair arbitration algorithm makes sure
that they all have equal rights to arbitration.

Let us suppose there are 10 nodes that have asynchronous traffic. If we suppose that all these
nodes have packets of the same size to send, and the size is such that only 2 packets can fit in
the asynchronous period, then each of the 10 nodes will be transmitting 1 packet every 5
cycles!

In practice we typically never know the traffic load of other nodes, so sometimes a node can
get 1 asynchronous packet every 5 cycles (like the example above), sometimes 10
asynchronous packets within the same cycle (nobody else had anything to transmit), etc.

The net result is that asynchronous traffic does not have guaranteed timing; we don't know
how long an asynchronous packet will wait in the queue before it gets transmitted.

Asynchronous Stream Packets
It would be worth noting in this document the 1394 standard provides with a special
exception to the rules described in the previous sections.

It is really a simple concept, but can easily lead to confusion:

64
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Asynchronous Stream Packets are packets of the isochronous packet format
(transaction code = 10) that get transmitted in the asynchronous period.

The reasons for this are beyond the scope of this document, but the concept of asynchronous
stream packets is extremely simple to grasp: The 1394 node prepares an isochronous packet
(a packet with the isochronous packet format) but then queues it in the asynchronous
transmission queue instead of the isochronous transmission queue, an action that is
permissible by the LINK chip. Thus, this isochronous packet gets transmitted in the
asynchronous period, with all the restrictions of an asynchronous packet (fair arbitration,
unknown timing).

The opposite exception, queuing an asynchronous packet in the isochronous queue, as we saw
earlier, is not permitted.

Asynchronous Stream packets are a very attractive feature, especially as a device-to-host
notification mechanism, because the device need not know the current physical ID of the
controlling host.

However, from the side of the receiver these packets look to high level software exactly the
same as normal isochronous packets. This means the receiver must have setup isochronous
receive DMA as appropriate; the asynchronous stream packets will not be received by the
same DMA engine that handles the rest of the asynchronous traffic.

65
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Packet Size Restrictions
The amount of data inside a data packet, called the "payload", cannot be arbitrarily large. The
maximum size permitted depends on the packet type (asynchronous vs. isochronous) and the
packet transmission speed.

The next two tables show the limits that the 1394 standard imposes on the payload:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 6-4)

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 6-7)

We can notice that isochronous packets are in favor. The maximum payload of isochronous
packets for any transmission speed is the double of the asynchronous packet limit for the
same transmission speed.

66
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Link Layer Operation
The following state machine diagram taken from the 1394 standard shows the operation of
the 1394 Link Layer, in a way similar to a flowchart:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 6-21)

The diagram is quite complex, but we can quickly traverse some “example” paths and see
how all the descriptions that we gave earlier fit nicely inside this state machine.

• The state machine starts at state L0 (Asynchronous Operation Ready).
• When an asynchronous packet is received the transition L0:L4 is taken.

67
 Copyright © 2010, 1394 Trade Association. All rights reserved.

• If this is a normal asynchronous packet, then the transition L4:L5 is taken, then L5:L6
and finally L6:L0 and we are back where we started.

• If at L0 a Cycle Start packet is received, then the path L0:L4:L10 is taken and the
state machine is now “Isochronous Operation Ready”. This starts the isochronous
period.

• If there is an isochronous packet to be sent, then the path L10:L11:L12 is taken and
then back to L10.

• At some point a subaction indication occurs and the transition L10:L0 is taken. The
isochronous period is over and we move once again back to the asynchronous period.

Transaction types: Read, Write, Lock
Earlier in this document we discussed the 1394 Addressing Model and we saw that the 1394
protocol abstracts the bus as a fixed 64-bit address space. The operations defined on this
model (the actions that can take place between nodes) are called "transactions". The term
should not be confused with its equivalent in database theory. 1394 "transactions" have
nothing in common with database "transactions". In 1394, the term "transaction" has the same
meaning as in "Transaction Layer".

Needless to say, transactions are performed with asynchronous packets.

The 1394-2008 standard lists the available transaction types as follows:

The transaction layer provides three operations for the transfer of data between
nodes:

a) Write transaction—Data are transferred to an address in a different node.
b) Read transaction—Data are retrieved from an address in a different node.
c) Lock transaction—Data are sent to a different node, used to perform an

indivisible function, and the results returned.

These different transaction types are mapped to different transaction codes of the
asynchronous packet header.

In general, each transaction is split into a "transaction request" packet and a corresponding
"transaction response" packet. Transaction response packets have their own transaction codes
in the packet header.

The general procedure is as follows:

1. Node A sends transaction request to Node B.
2. Node B acknowledges the transaction request.
3. Node B does some processing according to the request.
4. Node B sends a transaction response to node A.

In step 2, the acknowledge might be "negative". Node B is unable to receive this request
packet (any packet most likely) at this time, so the story ends there.

If the packet is received, then Node B will examine the "validity" of the request and will
either do the required processing and reply with a "success" response code, or it will reject the
operation and reply with a "failure" response code.

68
 Copyright © 2010, 1394 Trade Association. All rights reserved.

After the transaction request is transmitted and acknowledged, and until the transaction
response has been received, Node A considers the transaction as "pending".

Another option for Node B is to not answer back at all! In this case Node A will "timeout"
and will be left wondering if there is something wrong with Node B. And more often than not,
not sending back the transaction response packet is an indication of some internal error in
Node B.

It should be stressed that all these "transactions" are at the Transaction Layer level. There is
no hardware mechanism that forces a response to be sent and every transaction to be
"matched" appropriately. In fact Node A is free to directly send a transaction response packet
to Node B; Node B will receive the packet normally, will examine it and see that it has no
pending request for it and then trash it.

69
 Copyright © 2010, 1394 Trade Association. All rights reserved.

The CSR Model
As we stated earlier, FireWire follows the Command and Status Register (CSR) architecture
of IEEE Standard 1212-2001. We also stated that the 1394 protocol uses fixed 64-bit
addresses, where the high 16 bits act as the "external" address and the low 48 bits act as the
"internal" address.

The diagram that depicts this in IEEE1212 is shown below:

(Copyright IEEE. Used with permission. Identical to IEEE 1212-2001 Figure 4)

We already have seen a very similar diagram from the 1394-2008 standard. We can see that
the 48 "internal" address bits are further subdivided into "Register Space" (20 bits) and "CSR
Offset" (28 bits). This internal subdivision is provided mainly for "organizational" reasons,
creating some internal "law and order" and is mainly a "soft" division. The OHCI chips may
provide some slightly different functionality for addresses low in the Register Space, but for
all practical purposes of this document we can assume that a CSR's address utilizes the full 48
bits.

So what exactly is a Command and Status Register (CSR)? It seems that this term is so
universally fundamental and trivial that neither the IEEE1212 standard (which has the term
CSR in its title) nor the IEEE1394-2008 standard care to define it clearly. Obviously everyone
knows what a "Register" is (right?), so a CSR is a "register" that can "implement" commands
and inform us about "status". I don't know if that leaves out much, but it is a start to our
discussion.

In the 1394 model a CSR is basically a "software5 mini-module" tied up to a particular 48-bit
offset, similar to an interrupt handler tied to an interrupt number. When an asynchronous
request packet arrives for that specific 48-bit offset, the device driver first checks if there is
any "software mini-module" associated with this offset. If not, the packet is trashed. If yes,
then the packet is handled to the "software mini-module" for processing.

5 or firmware

70
 Copyright © 2010, 1394 Trade Association. All rights reserved.

What the "software mini-module" does is completely irrelevant. It does what the
corresponding CSR specification says it will do. Maybe it reads some information for the
actual device (e.g. a camera) and returns that "status" information. Or it does an action on the
actual device (e.g. start or stop a camera), which classifies it as "command". Of course, it can
do both: When a read transaction request is received then it returns "status"; when a write
transaction request is received then it performs an action.

We use the term "software mini-module" instead of "software module" to indicate that in
most systems a "software module" (a bigger thing) hooks up several different 48-bit offsets,
so when a packet comes for one of these offsets it is some part of the software module that
takes care of it.

Usually the size of a CSR is a quadlet (4 bytes). The diagram below shows the standards'
convention for describing part of the operation of a CSR:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 7)

The first row shows the overall definition of the internal parts (bit fields) within the CSR, and
the other rows how the CSR behaves upon initialization, read or write transactions.

The following is an example CSR from the IIDC standard:

This is a very simple CSR. Only one bit is defined and the rest are reserved.

71
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Configuration ROM & GUIDs
In the earlier diagrams about the 1394 address space we can see a section of the memory
space marked as the "Configuration ROM". This is a special purpose memory block which
can contain extended information about a node's capabilities. Only "transaction-capable"
nodes are required to implement the Configuration ROM (host adapters, cameras, disks).
The Configuration ROM is structured in a hierarchical way as shown below:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 8-18)

The memory layout looks like this:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 8-20)

The Bus_Info_Block is very important and is shown below:

(Copyright IEEE. Used with permission. Identical to IEEE 1394-2008 Figure 8-21)

The last two quadlets of the Bus_Info_Block contain the so called "GUID" which stands for
"Globally Unique IDentifier". The GUID is comprised by a 24-bit "Vendor ID" and a 40-bit
"Chip ID". In fact manufacturers are required to store unique values in these fields in such a
way that no two devices have the same 64-bit GUID.
GUIDs are usually being used by software to identify devices across bus resets, when the
Physical ID may change.

72
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Transaction types
The 1394-2008 standard also categorizes transactions according to their "execution"
characteristics as shown in the list below:

• 7.3.2.1 Unified transaction
A unified transaction is defined as a transaction that begins with an acknowledged
request subaction but is not followed by a response subaction. Only write transactions
may normally complete as unified transactions. Read transactions and lock
transactions do not normally complete as unified transactions.

• 7.3.2.2 Split transaction
A split transaction is defined as a transaction that begins with an acknowledged
request subaction and is followed by an acknowledged response subaction. Read
transactions, write transactions, and lock transactions may be split transactions. Other
subactions may occur between the request subaction and the response subaction.

• 7.3.2.3 Concatenated transaction
A concatenated transaction is defined as a transaction that begins with an
acknowledged request subaction and is followed immediately by the corresponding
acknowledged response subaction, with no subaction gap between. Read transactions,
write transactions, and lock transactions may be concatenated transactions. No other
subactions shall occur between the request subaction and the response subaction of a
concatenated transaction.

• 7.3.2.4 Broadcast transaction
A broadcast transaction is defined as a transaction that contains only an
unacknowledged request subaction. Only write transactions may be broadcast
transactions. Read transactions and lock transactions shall not be broadcast
transactions.

• 7.3.2.5 Pending transaction
A pending transaction is defined as a transaction that is not yet completed.

Basically most transactions are "Split". The sender sends a transaction request that gets
acknowledged, other things happen and then the target returns a transaction response.

In some cases the target is able to send the response packet immediately after the transaction
request packet, without leaving the bus available for other nodes to send their traffic. These
are the "Concatenated" transactions.

The "Unified" case is a special case for write transactions. The sender sends the write
transaction request and the target returns a special acknowledge code that means "This
transaction is completed and no further response will be sent for it".

The broadcast and pending transactions we have already covered earlier in this document.

73
 Copyright © 2010, 1394 Trade Association. All rights reserved.

DMA
When FireWire first came into the market, different vendors provided different
implementations of the LINK layer functionality. The difference was not only internal to the
chips but applied also to their "external" interface. You needed different software code to talk
to each LINK chip and different electronic designs on the adapters.

This is of course a highly undesirable situation in the software industry (and the hardware too),
so as soon as FireWire gained enough momentum, the external interface of the LINK chips
was standardized to what is today known as "1394 OHCI". OHCI stands for "Open Host
Controller Interface" and there are similar standards for other technologies like USB.
Technically we should say "1394 OHCI" to make sure no confusion occurs, but since we are
in a 1394-specific context we will call the 1394 LINK chips as OHCI chips and use common
expressions like "The OHCI transmits a packet" to mean "The 1394 Link layer implemented
by the OHCI chip transmits a packet".

Providing an interface to 1394 for the Host Controller is not an easy task, especially for high
performance technologies like FireWire.

Ask this simple question: "When a packet gets received, where does it get stored"?

There are two possible answers:

1. The packet gets stored in on-board memory and then the adapter raises an interrupt.
The host software then processes the interrupt and copies the packet from there to
main memory.

2. The packet gets stored directly in main memory using DMA (Direct Memory Access).
After getting completed the adapter raises an interrupt to inform the host software that
a new packet is available.

The same options are available for outgoing packets (packets to be transmitted):

1. The packet gets copied by host software onto the on-board memory. Then the
software tells the adapter to transmit the packet.

2. The adapter can read the packet directly from main memory using DMA and then
transmit it.

The option of having on-board memory has the following shortcomings:

• How much memory do you put on the board so that you don't have out-of-memory
conditions?

• Putting memory on the boards also requires extra circuitry, which (together with the
memory itself) make the boards more expensive and less reliable.

• Usually copying a packet from on-board memory to main memory, or in the other
direction is much slower compared to other options such as DMA.

• Such data copies are usually done either by the CPU itself (leading to higher CPU
utilization) or the so called "System DMA controllers" which might not be available
at all times and are slower too.

However, the option of having a device reading or writing directly to main memory is also
complicated, because the chip must be able to act as "Bus Master" in the Host Controller's bus

74
 Copyright © 2010, 1394 Trade Association. All rights reserved.

(usually a PCI bus) and perform "Bus Mastering DMA". This means that the device is capable
of "talking" in the PCI protocol and initiate and control itself transfers to and from main
memory in accordance to the PCI protocol.

Bus Mastering DMA largely improves performance, but requires much more complex chips.
This is the reason that older Ethernet network adapters used the on-board memory approach.
Modern and usually quite expensive GigE6 adapters may have DMA capability.

FireWire, being a high performance bus, had no option but to standardize OHCI as a chip that
is capable of Bus Mastering DMA. The following conceptual block diagram for the OHCI 1.1
specification illustrates this:

Some acronyms deserve clarification:

Acronym Meaning
AR Asynchronous Receive
AT Asynchronous Transmit
IR Isochronous Receive
IT Isochronous Transmit

We can see from this diagram that the OHCI chip connects (bridges) the 1394 bus to the host
bus. The OHCI chip operation is logically organized into several "DMA Engines" each of
which is dedicated to a particular type of 1394 packets.

6 Gigabit Ethernet

75
 Copyright © 2010, 1394 Trade Association. All rights reserved.

In this conceptual diagram we can see various FIFOs, special purpose memories whose size is
usually between 2K and 8K, where packet data are temporarily buffered while awaiting the
grant to be transferred over the host bus to the host memory. These memories do not get a full
packet and then start the DMA to the host memory. Packet data gets transferred to host
memory "block-by-block" while the packet is still being received. The same happens in the
reverse direction too. Outgoing packets get moved "block-by-block" from main memory to
the appropriate FIFO as the packet is being transmitted on the 1394 bus.

DMA Contexts & Context Programs
This section will describe in the shortest possible way the operation of the OHCI chip. The
OHCI 1.1 specification states the following in paragraph 1.3.2, titled "DMA":

The 1394 Open HCI supports seven types of DMA. Each type of DMA has
reserved register space and can support at least one distinct logical data stream
referred to as a DMA context.

Each asynchronous and isochronous context is comprised of a buffer descriptor
list called a DMA context program, stored in main memory. Buffers are specified
within the DMA context program by DMA descriptors.

So a "DMA Context" is distinct logical data stream. Actually it is more helpful to think of a
DMA context as a subordinate CPU inside the OHCI chip. It is actually an execution engine,
a small CPU that executes a program. That program is called the DMA Context Program.
What do such programs look like? Usually something like this (example for AR):

1. When a packet up to 4K in size arrives, you can receive the first 1024 bytes at main memory physical
address 0xFFA04B00, 3072 bytes at 0xFEED2000. When packet reception is complete, raise AR
interrupt.

2. When a packet up to 4K in size arrives, you can receive the first 1600 bytes at main memory physical
address 0xFFA619C0, and 2496 bytes at 0xFBE23000. When packet reception is complete, raise AR
interrupt.

3. When a packet up to 4K in size arrives …
…

99. Goto step 1

The reasons that packets might have to be split in multiple locations in main memory has to
do with virtual memory systems, where a memory buffer that is contiguous in virtual memory
space is actually split across several physical memory pages.

76
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Who prepares the instructions of the DMA context programs for all the DMA contexts? In the
case of PCs, it is the 1394 device driver that does this. For other types of devices, like
cameras, it is the firmware of the device that prepares the context programs.

What is of special interest is the operation of the isochronous receive contexts. As shown in
the table above, there are at least four of them. In this case, a software program is expecting a
video frame from a camera and the video frame is transmitted isochronously. The software
has configured the camera to some specific video format and isochronous channel number.
This means that the software knows the exact number of bytes that are needed to receive a
single frame, the isochronous packet size and of course the number of packets per frame.

So, the software allocates a buffer of the appropriate size and asks the device driver to prepare
a DMA context program for one of the isochronous receive DMA contexts that will receive
the expected number of isochronous packets directly into that buffer. So when the frame gets
received, it gets received directly into the application's memory buffer, without any extra
memory copies or any other involvement of the host's CPUs. This is a significant advantage
of FireWire over other competitive technologies.

It should be clear that in this example the software must also know the order of pixel
transmission of the image by the camera, so that it can provide the memory locations in the
context program as appropriate.

If, for example, the camera is transmitting the image top-to-bottom, then the first instruction
of the DMA context will point to the start of the buffer, the second instruction a little after
that (a whole packet payload), etc, and the last instruction one packet payload before the end
of the buffer.

If instead the camera is transmitting the image bottom-up, then the first instruction of the
DMA context will point one packet payload before the end of the buffer, the second
instruction two packet payloads before the end of the buffer, etc, and the last instruction at the
beginning of the buffer.

IIDC cameras transmit their images top to bottom, but this is just a convention of the IIDC
standard.

77
 Copyright © 2010, 1394 Trade Association. All rights reserved.

Serial Bus Management
The term Serial Bus Management refers to a "layer" in the 1394 protocol model that is
responsible for some higher level operations that maintain the bus in a "healthy" operational
status.

Many nodes on the 1394 bus may be capable of performing the duties required by the Serial
Bus Management layer, but at any point in time only one node is acting as the "Serial Bus
Manager" (SBM).

Immediately after the bus reset processing is completed and normal traffic resumes, all SBM-
capable nodes perform a well defined "contention" which has one winner. That winner is the
"elected" SBM.

Some of these tasks are listed below:

• Make sure that the bus is "Isochronous Capable" (i.e. a Cycle Master Capable node is
the root node).

• Optimize bus performance characteristics (e.g. the gap_count parameter).
• Implement the BUS_MANAGER_ID, BANDWIDTH_AVAILABLE,

CHANNELS_AVAILABLE, and BROADCAST_CHANNEL registers.

In most FireWire systems the SBM services are provided by a PC.

	Firewire reference tutorial
	Content table
	IEEE 1394 background
	Introduction
	Firewire applications
	Firewire products
	Host adapters
	3 external firewire ports and 1 PCie interface
	2 external firewire ports, 1 internal Firewire port and 1 PCI-Express interface
	PCI-Express adapter with 2 firewire port and 1 GOF port
	Express card adapter, suitable for laptop

	Cables and connectors
	Repeaters
	Digital cameras
	External hard disks
	Example 1394 bus
	Double and quad host adapters

	IEEE 1394 standards
	IEEE 1394 technology
	Module architecture
	Conceptual bus model
	IEEE 1394 backplane VS cable environment
	Firewire speeds and backwards compatibility
	1394 addressing model
	Size notation and endianess
	Bus reset and 1394 bus self-configuration
	Beta loop and redundancy
	Protocol layering
	1394 bus packets
	1394 bus cycle
	Introduction
	Cycle start packets and the cycle master
	Cycle structure and cycle drift
	Isochronous and asynchronous traffic

	The essence of isochronous traffic
	Isochronous bandwith
	Asynchronous traffic
	Asynchronous streams packets
	Packet size restrictions
	Link layer operation
	Transaction types : read, write, lock
	The CSR model
	Configuration ROM and GUIDs
	Transactions types
	DMA
	DMA contexts and context programs
	Serial bus management

