
Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 1/50

Introduction to Robotics

Module:
Trajectory generation and robot programming

(summer term 2000)

Recommended literature

Text Books

• Craig,J.J.: Introduction to Robotics. Addison-Wesley, 2nd. Ed, 1989 (3rd edition will be
available 2000 ?)

• Craig,J.: Adaptive Control of Mechanical Manipulators. Addison-Wesley, Reading(Mass.),
1988

• R.P. Paul: Robot Manipulators, MIT Press 1981

Journals

• Transactions on Robotics and Automation, IEEE

• IEEE Conference on Robotics and Automation

Acknowledgement

This handout has been partially derived from the lecture notes from Wolfgang Weber
teaching robotics at the Fachhochschule Darmstadt, Germany and the above mentioned
textbooks from J.J. Craig and R.P. Paul.

Revisions

Revision Date Author History
0.9 12-Mar-99 Th. Horsch 1st draft
1.0 20.2.2000 Th. Horsch 1st release

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 2/50

CONTENT

1. MOTIVATION .. 3

1.1. WHY STUDY ROBOTICS .. 3
1.2. TERMINOLOGY.. 3
1.3. TYPES OF ROBOT MOTION.. 6

2. SPATIAL DESCRIPTIONS AND TRANSFORMATIONS ... 8

2.1. DESCRIPTIONS: POSITIONS, ORIENTATIONS AND FRAMES .. 8
2.2. CONSIDERATIONS ... 14
2.3. ORIENTATION DEFINED BY EULER-ANGLES .. 15

3. ROBOT KINEMATICS... 19

3.1. LINK CONNECTION DESCRIPTION BY DENAVIT-HARTENBERG NOTATION................................. 19
3.2. FORWARD KINEMATICS .. 26
3.3. INVERSE KINEMATICS .. 27

4. TRAJECTORY GENERATION .. 34

4.1. TRAJECTORY GENERATION IN JOINT SPACE (PTP MOTIONS) .. 34
4.2. ASYNCHRONE PTP AND SYNCHRONE PTP ... 38
4.3. TRAJECTORY GENERATION IN CARTESIAN SPACE .. 38

4.3.1. Linear Interpolation... 39
4.3.2. Circular interpolation... 43
4.3.3. Corner smoothing... 44

4.4. SPLINE INTERPOLATION BASED ON BÉZIER CURVES .. 45

5. ROBOT PROGRAMMING LANGUAGES .. 49

5.1. REQUIREMENTS OF A ROBOT PROGRAMMING LANGUAGE ... 50

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 3/50

1. Motivation

1.1. Why study robotics

Robots are mainly used for

• Automation of industrial tasks
• Spot welding
• Arc welding
• Machine transfer and machine tending
• Pick and Place
• Clueing and sealing
• Deburring
• Assembly/Disassembly

• Testbed for Artificial Intelligence (AI)

Robotics is an interdisciplinary subject requiring

Mechanical Engineering (addressed in module Components of a robot
arm)

Electrical/Electronic Engineering (addressed in module Control of a robot arm)
Computer Science/Mathematics (addressed in this module)

It is worth noting that many problems in computer graphics animation are related to
robotics problems (much of the material in this course is relevant to animation).

1.2. Terminology

We begin with some robot terminology.

Exactly what constitutes a robot is sometimes debated. Numerically controlled (milling)
machines are usually not referred as robots. The distiction lies somewhere in the
sophistication of the programmability of the device – if a mechanical device can be
programmed to perfom a wide variety of applications, it is probably an indstrial robot.
Machines which are for the most part relegated to one class of task are considered fixed
automation.

 prismatic joint

 links

 end effector

 joints

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 4/50

Industrial robots constist of (nearly) rigid links which are connected with joints which allow
relative motion of neighboring links. These joints are usually instrumented with position
sensors which allow the relative position of neighboring links to be measured. In case of
rotary or revolute joints, these displacements are called joint angles. Some robots
contain sliding, or prismatic joints.

The number of degrees of freedom that a robot possesses is the number of independant
position varaibles which would have to be specified in order to locate all parts of the
mechanism. Usually a robot is an open kinematic chain. This implies, that each joint
variable is usually defined with a single variable and the number of joints equals the
number of degrees of freedom.

At the free end of the chain of links which make up the robot is the end effector.
Depending on the intended application of the robot, the end effector may be a gripper,
welding torch or any other device. We generally describe the position of the manipulator
by giving a description of the tool frame or sometimes called the TCP frame (TCP=Tool
Center Point), which is attached to the end-effector, relative to the base frame which is
attached to the nonmoving base of the manipulator.

Frames (coordinate systems) are used to describe the position and orientation of a rigid
body in space. They serve as a reference system within which to express the position and
orientation of a body.

Exercises with EASY-ROB:

• a 6R robot with intersecting wrist axes (->load ->robot ->rv6.rob in EASY-ROB)

• a 2 degree of freedom (DOF) robot with rotational joints (2R planar robot) (->load -
>robot ->dh2.rob in EASY-ROB)

• a 7R robot with rotational joints (->load ->robot ->dh_manth7.rob in EASY-ROB)

You can consider more examples with EASY-ROB. Robots from different robot vendors
are available: Fanuc, ABB, KUKA, Reis (->load ->extern in EASY-ROB)

Kinematics is the science of motion which treats motion without regard to the forces
which cause it. Within the science of kinematics one studies the position, velocity,
acceleration, and all higher order derivatives of the position variables. Hence, the study of
the kinematics of robots refers to all geometrical and time-based properties of the motion.

A very basic problem to be solved is:

How to relate the robot’s configuration or pose to the position and orientation of its end
effector. A configuration of an n-degree of freedom robot is an n-vector ()nqqq ,...,, 21 ,

where each iq is either a rotational joint angle or a prismatic joint translation.
This is known as the forward kinematics of the robot. This is the static geometrical
problem of computing the position and orientation of the end-effector of the robot.
Specifically, given a set of joint angles, the forward kinematic problem is to compute the
position and orientation of the TCP relative to the base frame. Sometimes we think of this
as changing the representation of robot position from joint space description into a
cartesian space description.

The following problem is considered the inverse kinematics: Given the position and
orientation of the end-effector of the robot, calculate all possible sets of joint angles which

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 5/50

could be used to attain the this given position and orientation. The inverse kinematics is
not as simple as the forward kinematics. Because the kinematic equations are nonlinear,
their solution is not always easy or even possible in a closed form. The existence of a
kinematic solution defines the workspace of a given robot. The lack of a solution means
that the robot cannot attain the desired position and orientation because it lies outside the
robot’s workspace.

In addition to dealing with static positioning problems, we may wish to analyse robots in
motion. Often in performing velocity analysis of a mechanism it is convenient to define a
matrix quantity called the jacobian of the robot. The jacobian specifies a mapping from
velocities in joint space to velocities in cartesian space. The nature of this mapping
changes as the configuration of the robot varies. At certain points, called singularities, this
mapping is not invertible. An understanding of this phenomenon is important to designers
and users of robots.

A common way of causing a robot to move from A to B in a smooth, controlled fashion is
to cause each joint to move as specified by a smooth function of time. Commonly, each
joint starts and ends ist motion at the same time, so that the robot motion appears
coordinated. Exactly how to compute these motion functions is the problem of trajectory
generation.

A robot programming language serves as an interface between the human user and the
industrial robot. Central questions arise such as:
How are motions through space described easily by a programmer ?
How are multiple robots programmed so that they can work in parallel ?
How are sensor-based actions described in a language ?

The sophistication of the user interface is becoming extremely important as robots and
other programmable devices are applied to more and more demanding industrial
applications.

An off-line programming system is a robot programming environment which has been
sufficiently extended, generally by means of computer graphics, so that the development
of robot programs can take place without access to the robot itself. A common argument
raised in the favor is that an off-line programming system will not cause production
equipment (i.e. the robot) to be tied up when it needs to be reprogrammed; hence,
automated factories can stay in production mode a greater percentage of time.

A robot constists of three main systems:

• Programming system:

A robot user needs to „teach“ the robot the specific task which is to be performed. This
can be done with the so called teach in method. The programmer uses the teach box of
the robot control and drives the robot to the diesired positions and stores them and other
values like travel speed, corner smoothing parameters, process parameters, etc. For the
programming period which can take a significant time for complex tasks the production is
idle. Another possibility is the use of Off-line programming systems mentioned before.

• Robot control:

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 6/50

The robot control interprets the robot’s application program and generates a series of joint
values and joint velocities (and sometimes accellerations) in an appropriate way for the
feedback control. Today mainly an independant joint control approach is taken, but more
and more sophisticated control approaches, like adaptive control, nonlinear control, etc
are involved in robotics. The following figure shows a possible control structure.

Figure 1-1: structure of a robot control

• Robot mechanics:

The robot mechanics will transform the joint torques applied by the servo drives into an
appropriate motion. Nowadays AC motors are used to drive the axis.
Resolvers serve as a position sensor and are normally located on the shaft of the
actuator. Resolvers are devices which output two analog signals – one is the sine of the
shaft angle and the other the cosine. The shaft angle is determined from the relative
magnitude of the two signals.

1.3. Types of robot motion

PTP(Point to Point)-motion

A motion which specifies the configuration of the robot at the start and the end point. The
motion between these points is not determined in the sense that the TCP follows a
desired (cartesian) path. This motion type is mainly relevant for pick and place type tasks,
where the position and orientation along the path is not important. Since this motion is
very hard to predict in cartesian space, the programmer has to be careful regarding
collisions between the robot and ist environment. On the other hand this motion is easy
(and fast) in calculation, because no transformation of inverse kinematics needs to be
computed.

Figure 1-1 describes two examples:

external
control

coordinate
transformation

internal
control
(joint-
control)

measured
joint values

world coordinates
(desired) joint values

(desired)

sensor signals

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 7/50

A

B

y

x x

y

°
°

Bsp.: T
an

r a
n

n
s

sp
o

o
rr

pick and placedrilling table

Figure 1-1: PTP-motions in world coordinate system, left: path bewteen two drilling holes,
right: robot end-effector and three configurations for pick & place

Applications for PTP motions are spot welding, handling, pick and place, (partly) machine
handling and machine transfer

CP (Continuous Path) motion

A motion type which specifies the whole path regarding position and orientation of the
TCP. That means that the motions of each axes are mutually depending. These motions
are more computationally expensive to execute at run time compared to PTP motions,
since inverse kinematics must be solved for each time step (usually around 10
milliseconds in todays robot controller). Possible cartesian motion types include linear
interpolation (specified by start and end point) and circular interpolation (specified by start
point, via point and end point).
Figure 1-2 describes two examples

y

x x

y via point

Figure 1-2: example for interpolated motions between programmed positions, left: a
sequence consisting of 5 linear motion, right: linear – circular – linear motion

Applications for CP motions are arc welding, deburring, clueing, etc.

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 8/50

2. Spatial descriptions and transformations
The following section summarizes the main mathematical methods in order to describe
positions and orientations with respect to a particular coordinate system.

2.1. Descriptions: positions, orientations and frames

To describe the position and orientation of the TCP, gripper, robot links, objects in the
environment, etc. coordinate systems are used.

y
z

x x

x

y

yz

z
 arrow points out of the plane arrow points into the plane

Figure 2-1: Coordinate system

For coordinate systems the following rule can be used:

Three-finger-rule of the right hand:
Thumb points in (positive) x-direction, pointing finger in (positive) y-direction, middle
finger point then in (positive) z-direction.

Once a coordinate system is established we can locate any point in the world with 3x1
position vector. Sometimes more than one coordinate system are defined. So vectors
must be tagged with information identifying which coordinate system they are defined
within. In this lecture vectors are written with a leading subscript indicating the coordinate
system to which they are referenced (unless it is clear from context, this subscript is
omitted).

Geometrically a vector can be interpreted as an arrow describing its length and direction.

Figure 2-2: geometrical description of a vector

A vector can be translated without change (two vectors are identical, if they equal in
length and direction). In the context of a coordinate system a (three-dimensional) vector is
a three-tupel of numerical values indicating the distances along the axes of the coordinate

start

end

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 9/50

system. Each of these distances along an axis can be thought of as a result of projecting
the vector onto the corresponding axis.
















=

z

y

x

v

v

v

v z x

y

v

vx

y
v

Figure 2-3: description of a vector in a coordinate system

modulus (length) of a vectors: v v v vx y z= + +2 2 2

(2.1)

(unit) direction of a vector:















==

v/v

v/v

v/v

v
v

e

z

y

x

v (2.2)

addition of vectors:

















+
+
+

=+=

z2z1

y2y1

x2x1

213

vv

vv

vv

vvv

v1
2

3

v

v
(2.3)

subtraction of vectors:

















−
−
−

=−

z2z1

y2y1

x2x1

21

vv

vv

vv

vv
v1

2
v2

v v1 --

(2.4)

cross product of two vectors: v v v3 1 2= ×

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 10/50

















⋅−⋅
⋅−⋅
⋅−⋅

=















=

x2y1y2x1

z2x1x2z1

y2z1z2y1

z3

y3

x3

3

vvvv

vvvv

vvvv

v

v

v

v (2.5)

v3 is orthogonal to the plane, generated by v1 and v2. The three-finger-rule derives the
direction of v3 (see Figure 2-4).

3
v

v1

2
v

.
.

Figure 2-4: cross product

Dot product of two vectors:

The dot product of two vectors is defined by (2.6). The result is a scalar value which is
related to the opening angle between the vectors. If one of the vectors is a unit vector (a
vector with unit length) the result is the length of projection onto the unit vector. (see
Figure 2-5).

a b a b⋅ = ⋅ ⋅cosϕ , zzyyxx babababa ⋅+⋅+⋅=⋅ (2.6)

Figure 2-5: dot product of two vectors

Base vectors xi , yi , zi of the coordinate system Ki . A cartesian coordinate system is fully

described by ist base vectors xi, yi, zi, which are orthogonal to each other (Figure 2-6).

)(1,

1

0

0

,

0

1

0

,

0

0

1

vectorsunitzyxzyx iiiiii −===















=
















=
















= (2.7)

ϕ

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 11/50

i

z

xi

y
i

i

x
i

y
i

z
i

K

Figure 2-6: base vectors of a coordinate system

Rotation matrix:

Rotation matrices are used to describe the base vectors of a coordinate system relative to
another reference system. A vector a can be expressed with such a rotation matrix in
different coordinate systems.

aI : vector a, represented in the i-th coordinate system

Given the base vectors of two coordinate systems i and k:

()
















⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

==

ikikik

ikikik

ikikik

K
I

K

I
K

II
K

zzzyzx

yzyyyx

xzxyxx

zyxA . (2.8)

Each component of the (3x3) rotation matrix AI
K can be written as the dot product of a

pair of unit vectors. Note, that the components of any vector are simply the projections of
that vector onto the unit direction of its reference frame. Since the dot product of two unit
vectors yields the cosine of the angle between them, these components are oftens
referred to as direction cosines.

As explained before and further inspection of (2.8) shows that the rows of the matrix are

the unit vectors of system i expressed in system k. Hence, AK
I , the description of frame i

relative to k is given by the transpose of (2.8). This suggests that the inverse of a rotation
matrix is equal to ist transpose.

Exercise: proof IAA K
I

TK
I =

An arbitrary vector a represented in the coordinate system k can be expressed in the
coordinate system i using the rotation matrix (and vice versa):

TI
K

K
I

IK
I

KKI
K

I AAwithaAaoraAa =⋅=⋅= (2.9)

Properties of rotations:
• det(A) = 1

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 12/50

• columns are mutually orthogonal
• possible to describe rotations with fewer than 9 numbers
• result from linear algebra: Cayley’s formula for orthogonal matrices

() ()















=−=+−= −

0

0

0

 , symmetric scew is S ,3
1

3

xy

xz

yz

T

s-s

-ss

s-s

S)S(SSISIR

• three parameters to describe rotation

• same result by investigation of R
• six constraints and nine matrix elements

0

1

===

===

zxzyyx

zyx
TTT

• rotations do not generally commute: 1221 RRRR ≠

Exercise:

Calculate)
2

()
2

(
ππ

ZX RotRot and)
2

()
2

(
ππ

XZ RotRot and solve both compound

transformations geometrically by drawing a frame diagram.

Homogeneous coordinates (frames)
4x4 homogeneous transforms are used to cast the rotation and translation of a general
transform into a single matrix form. In other fields of study it can be used to compute
perspective and scaling operations. Hence, they describe the spatial relationship between
two coordinate systems (see Figure 2-7).







⋅





=






1101

apAa K

T

II
K

I

• 1 added as the last element of the 4x1 vector
• row (0 0 0 1) is added as last row of 4x4 matrix

Figure 2-7: spatial relationship between two coordinate systems

pzyx I
K

I

K

I
K

I ,,,

p
kx

k
y

kz

iz

i
y

ix
KI

KK

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 13/50

The homogeneous transform DI
K can be viewed as the representation of the vectors xk,

yk, zk, p in the i-th coordinate system:









=

1000
K

I
K

I

K

I
K

I
I

K

pzyx
D (2.10)

Homogeneous transforms of several coordinate systems (compound transformations):

Combining two transformations is performed by multiplication of two homogenous
transforms (see Figure 2-8):









=⋅= +++++

+++
1000

22221
212

I

I
I

I

I

I
I

I
I
I

I
I

I
I

pzyx
DDD (2.11)

K

K

i+1

i+2

i+1

i+2

x
y

z

x

y

z

i+2
i+2

i+1

i+1

p
i+1

K

i

x

y

z

i

i

i

p

p
i

i+2

Figure 2-8: Compound transformations

Exercise:

• Describe rotational and translational part of DI
I 2+ in terms of the rotational and

translational parts of DI
I 1+ and DI

I
1
2

+
+ .

• Invert a homogenous transform 





=

10T

pR
D

Interpretations:

• A homogeneous transform is a description of a frame. DI
K describes the frame K

relative to the frame I. Specifically, the columns of RI
K are unit vectors defining the

principal axes of frame K and p locates the position of the origin of K relativ to frame I.

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 14/50

• A homogeneous transform is a mapping. DI
K maps PP IK �

 .

2.2. Considerations

Consideration of robots only with open kinematic chain

Example:

Base
Base

Endeffector

Joints
Base

Links

Figure 2-1: possible design of robots and their schematic sketch

Figure 2-2: Description of the position and orientation of the tool center point (TCP) with
respect to the base (world) frame K0

o

n
0z

0
y

0x

p

K0

TCP

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 15/50

Attached to the TCP is the tool frame described by

Translation p with respect to K0 (Position)
n, o, a with respect to K0 (Orientation)

Rotation matrix representing the orientation:

()aon 000 ,, : normal, orthogonal, approach

homogeneous transformation integrating position and orientation with respect to base
frame
K0:

 







==

1000

0000
0 paon
DT N (2.12)

Index n denotes the degree of freedom of the robot

2.3. Orientation defined by Euler-Angles

Avoid redundant information by introduction of angles

translation p with respect to K0 (Position)
three angles a, b, c (Orientierung)

Fixed angles: rotation takes place around fixed frame
Euler angles: rotation takes place around moving frame

Definition: X-Y-Z fixed angles

a: rotation around the z0-axis
b: rotation around the y0-axis
c: rotation around the x0-axis

Each of the three rotations takes place about an axis of the fixed reference frame.

,....cos,sin with

0

0

001

0

010

0

100

0

0

)()()(),,(

acaasa

cbcccbscsb

cascsasbcccaccsasbscsacb

sasccasbccsacccasbsccacb

ccsc

sccc

cbsb

sbcb

casa

saca

cRbRaRabcR XYZXYZ

==
















−
−+
+−

=
















−

















−













 −
==

(2.13)
Inverse problem is of interest.
















=

333231

232221

131211

),,(

rrr

rrr

rrr

abcRXYZ

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 16/50

Exercise: Calculate a,b,c depending on matrix values. What happens, if B=+/- π/2

Definition A: (Z-Y-Z Euler angles)

α: rotation around the z0-axis
β: rotation around the (new) y-axis
γ: rotation around the (new) z-axis

The following relation holds between α, β, γ and n, o, a :

),(2arctan

),(2arctan

<0 :)arccos(

cos

sinsin

sincos

sinsin

coscossincossin

cossinsincoscos

cossin

sincoscoscossin

sinsincoscoscos

zz

xy

z

no

aa

witha

aon

−=

=
<=
















⋅
⋅

=
















⋅
⋅+⋅⋅−
⋅−⋅⋅−

=
















⋅−
⋅+⋅⋅
⋅−⋅⋅

=

γ
α

πββ

β
βα
βα

γβ
γαγβα
γαγβα

γβ
γαγβα
γαγβα

(2.14)
if β=0:),(2arctan xy nn=+ γα

Arctan calculates values between -π/2 and π/2
Arctan2 calculates values between -π and π































−+≤θ≤π−=θ

−−π−≤θ≤π−+π−=θ

+−π≤θ≤π+π=θ

++π≤θ≤=θ

==θ

y,xfür,02/),
x
y

arctan(

y,xfür,2/),
x
y

arctan(

y,xfür,2/),
x
y

arctan(

y,xfür,2/0),
x
y

arctan(

)x,y(2arctan

(2.15)

Definition B (Z-Y-X Euler-Angles)

Angle A rotates around the z-axis:

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 17/50















 −
=

100

0

0
’

0 ACosASin

ASinACos

A

A

x

y

z

y‘

x‘

Angle B rotates around the new y-axis

















−
=

BCosBSin

BSinBCos

A

0

010

0
’’
’

Angle C rotates around the new x-axis (x‘‘):
















−=

CCosCSin

CSinCCosA

0

0

001
*
’’

B

y´

X´

z´

z‘‘

x‘‘

x‘‘

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 18/50

















⋅⋅−
⋅⋅+⋅−⋅⋅+⋅⋅

⋅⋅+⋅⋅⋅+⋅−⋅
=⋅⋅=

CBCBB

CBACACBACABA

CBACACBACABA

CCSCS

CSSSCSSSCCCS

SSCSSSSCCSCC

AAAA *
’’

’’
’

’*

(2.16)

with etcASinSACosC AA == ,

relationships:

















⋅
⋅⋅−⋅−

⋅⋅−⋅
=

















⋅
⋅⋅−⋅
⋅⋅−⋅−

=















⋅
⋅

=

CB

CBACA

CBACA

CB

CBACA

CBACA

B

BA

BA

CC

CSSSC

SSCSS

a

SC

SSSCC

SSCCS

o

S

CS

CC

n

A=arctan2(
�

y,
�

x)
B=arcsin(

�
z)

(2.17)
C=arctan2(mz, nz)

Definition: Equivalent angle-axis

Rotation about the vector K by an angle a according to the right hand rule

ava

cavakksakvakksakvakk

sakvakkcavakksakvakk

sakvakksakvakkcavakk

aR

zzxzyyzx

xzyyyzyx

yzxzyxxx

K cos1 with)(−=
















+++
−++
+−+

=

(2.18)

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 19/50

3. Robot kinematics

Definitions:
• A robot may be thought of as a set of bodies connected in a chain by joints.
• These bodies are called links.
• Joints form a connection between a neighboring pair of links

Properties:
• Normally robots consist of joints with one degree of freedom (1 DOF).
• Revolute/prismatic joints
• n-DOF joints can be modeled as n joints with 1 DOF connected with n-1 links of zero

length
• Positioning a robot in 3-space a minimum of six joints is required
• Typical robot consist of 6 joints
• Joint axis are defined by lines in space
• A link can be specified by two numbers which define the relative location of the two

joint axes in space: link length and link twist
• Link length: measured along the line which is mutually perpendicular to both axes
• Link twist: measured in the plane defined by the perpendicular axis

3.1. Link connection description by Denavit-Hartenberg notation

Neighboring links have a common joint axis between them

Parameters:
• Distance along common axis from one link to the other (link offset)
• Amount of rotation about this common axis between one link and its neighbour (joint

angle)

Figure 3-1: The length a and twist α of a link

A serial link robot consists of a sequence of links connected together by actuated joints.
For an n DOF robot, there will be n joints and n links. The base of the robot is link 0 and is
not considered one of the (n=6) links. Link 1 is connected to the base link by joint 1. There
is no joint at the end of the final link (TCP). The only significance of links is that they
maintain a fixed relationship between the robot joints at each end of the link. Any link can
be characterized by two dimensions: the common normal distance ai (called link length)
and the angle αi (called link twist) between the axes in a plane perpendicular to ai (see
Figure 3-1). Generally, two links are connected at each joint axis (see Figure 3-2).

Axis i+1
Axis i

Link i

a i α i

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 20/50

The axis will have two normals to it, one for each link. The relative position of two such
connected links is given by di, the distance between the normals along the joint i axis, and
θi the angle between the normals measured in a plane normal to the axis. di and θi are
called the distance and the angle between the links, respectively.
In order to describe the relationship between links, we will assign coordinate systems
(frames) to each link. We will first consider revolute joints in which θi is the joint variable.
The origin of the frame of link i is set to be at the intersection of the common normal
between the axes of joints i and i+1 and the axis of joint i+1. In case of intersecting joint
axes, the origin is at the point of intersection of the joint axes. If the axes are parallel, the
origin is chosen to make the joint distance zero for the next link whose coordinate origin is
defined. The z axis for link i will be aligned with the axis of joint i+1. The x axis will be
aligned with any common normal which exists and is directed along the normal from joint i
to joint i+1. In case of intersecting joints, the direction of the x axis is parallel or antiparallel
to the vector cross product zi-1 x zi. Notice that this condition is also satisfied for the x axis
directed along the normal between joints i and i+1. θi is zero for the i-th revolute joint when
xi-1 and xi are parallel and have the same direction.
In case of prismatic joint, the distance di is the joint variable. The direction of the joint axis
is the direction in which the joint moves. The direction of the axis is defined but, unlike a
revolute joint, the position in space is not defined. In the case of a prismatic joint, the
length ai has no meaning and is set to zero. The origin of the frame for a prismatic joint is
coincident with the next defined link origin. The z axis of the prismatic joint is aligned with
the axis of joint i+1. The xi axis is parallel or antiparallel to the vector cross product of the
direction of the prismatic joint and zi. For a prismatic joint we will define the zero position
when di = 0.
With the robot in its zero position, the positive sense of rotation for revolute joints or
displacement for prismatic joints can be decided and the sense of the direction of the z
axis determined. The origin of the base link (zero) will be coincident with the origin of link
1. If it is desired to define a different reference frame, then the relationship between the
reference and base frames can be described by a fixed homogeneous transformation. At
the end of the robot, the final displacement d6 or rotation θ6 occurs with respect to z5. The
origin of the frame for link 6 is chosen to be coincident with that of the link 5 frame. If a
tool (or end effector) is used whose origin and axes do not coincide with the frame of link
6, the tool can be related by a fixed homogeneous transformation to link 6.
Having assigned frames to all links according to the preceding scheme, we can establish
the relationship between successive frames i-1,i by the following rotations and
translations:

• θi = the angle between Xi-1 and Xi measured about Zi-1

• di = the distance from Xi-1 to Xi measured along Zi-1

• ai = the distance from Zi-1 to Zi measured along Xi

• αi = the angle between Zi-1 and Zi measured about Xi

Due to the authors of this method attaching frames to links, these four parameters are
called the Denavit Hartenberg parameters (DH parameters).

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 21/50

Figure 3-2: Link parameters θ, d, a and α

The transformation from one link frame to the next can now be defined by homogeneous
transformations using this notation:


















−

−

=

=
−−

−

1000

cossin0

sinsincoscoscossin

cossinsincossincos

)()()()(
11

1

iii

iiiiiii

iiiiiii

iXiXiZiZ
I
I

d

a

a

RotaTransdTransRotD
iiii

αα
θαθαθθ
θαθαθθ

αθ

 (3.1)

The homogeneous matrices DI
I
1− are called Denavit-Hartenberg matrices.

Concenating link transformations to calculate the single transformation that relates frame
N (usually the TCP frame) to frame 0 (usually the base frame):

 DDDDDT N
N

N
NN

12
1

1
2

0
1

0 −−
− ⋅⋅⋅⋅⋅==

(3.2)

n defines the number of joints.

In case of rotational joints the components of the DH-matrices DI
I
1− only depend on the

joint angles θi , since the parameters ai , di , αi are constants. For that case the
transformation

)(),,,(21 θθθθ TTT n == �

Link i+1

Axis i+1
Axis i

Link i

Z i-1

X i-1

Z ia i

d i

θ i

Axis i-1

Link i-1

X i

α iθ i-1

θ i+1

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 22/50

is a function of all joint angles. The joint angles can be formed to a vector:



















=

nθ

θ
θ

θ �
2

1

.

Examples2-dof robot with parallel axes

h1

h2

x

y

z

x

yz

y

x

z
2

2

2 1

11

0

0 0Gelenk 1

Gelenk 2

TCP

Figure 3-3: Planar 2-dof robot including coordinate system

The following table shows the set of DH parameters: q1and q2 are variables (joint angles)

Joint θi / degree di Ai αi / degree
1 0 0 h1 0
2 -90 0 h2 0

The DH-transformations are:


















⋅−
⋅−−−

=


















⋅
⋅−

=

1000

0100

cos0sincos

sin0cossin

1000

0100

sin0cossin

cos0sincos

2222

2222

1
2

1111

1111

0
1

qhqq

qhqq

D
qhqq

qhqq

D

ii

ii

qS

qCShCCSShSCCSCCSS

ChCSSChSSCCCSSC

qTD
sin

cos

1000

0100
11)2121

(2021212121

11)2121
(2021212121

)(0
2 =

=


















++−−−+−
+−−+−−−

==

2-dof robot with perpendicular axes

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 23/50

x

z

x
x

y
y

y

z
z

0

1

2

2

2

1
1

1

0

0

h

h2

Figure 3-4: 2-dof robot with perpendicular axes

DH parameter:

joint qi / degree Di ai αi / degree
1 180 -h1 0 90
2 0 0 h2 0

q1, q2 are variables, a1, a2, d1, d2, α1, α2 are constants

3-dof robot with 2 rotational joints and 1 prismatic joint

h

d

x

z

y

y

y

yx

x

z
z

z

x

12

1

*

1

1

2

2

3
3

3

0

00

Figure 3-5: 3-dof robot with 2 rotational joints and 1 prismatic joint

DH parameter

joint qi / degree Di ai αι / degree
1 180 -h1 0 90
2 90 0 0 90
3 0 d* 0 0

q1, q2 ,d3 : variables, a1, a2,a3 d1, d2, α1, α2, α3 constants

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 24/50

6-dof robot with 6 rotational joints (frequently used kinematic structure)

x

y
z

0

1

2

3

4

5

6

y

x

z

x

y

z

x

y
z

x

x

x

z

z

y

y

0

1

1

2

z
y

2

3

3
4

4

5

5

6

6

Figure 3-6: 6-dof robot with 6 rotational joints (frequently used kinematic structure)

xy

x x x

y y
y

x

y

x

z
y

y
z

z

z z z

z

x

1

2
4

5 6

h

h
h

h h

0

1

2

4 5 6

0

0

1

1

2
2

3

3
3 4

4 5

5 6

6

=0

Figure 3-7: sketch of 6-dof robot

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 25/50

DH parameter:

Joint qi / degree di Ai αι / degree
1 0 -h1(-0.78m) 0 90
2 -90 0 h2(0.8m) 0
3 0 0 0 -90
4 0 h4 (0.8m) 0 90
5 0 0 0 -90
6 0 h6 (0.334m) 0 0

Figure 3-8: Reis robot RV6 (payload 6 kg)

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 26/50

y

x x

y y

x

zy

y
z

z z z

z

x

10

4

6

h

2
h

h

h

x
0

1

2

4 5

y
6

0

0

y
1

z
1

2
2

x
3

3
3

4

4 5

5

x
6 6

RV6

h11

5
h =0

Figure 3-9: Reis robot RV6, sketch

DH parameter RV6:

Joint qi / rad di Ai αι / rad
1 0 0 h11 -π/2
2 -π/2 0 h2 0
3 π 0 0 π/2
4 π h4 0 π/2
5 0 0 0 -π/2
6 -π/2 h6 0 0

h11=0.28m
h2=0.615m
h4=0.54m
h6= depending on tool

3.2. Forward kinematics

Given the joint values of the robot with n degrees of freedom, the homogenous matrix
defining the position and orientation of the TCP is:

 DDDD
qpqaqoqn

qT N
N

N
N

12
1

1
2

0
1 ...

1000

)()()()(
)(−−

− ⋅⋅⋅⋅=





=

The vectors p, n, o, a are described in the base (world) frame. This mapping from robot
coordinates to world coordinates is unique.

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 27/50

Roboter-
koordinaten

Welt-
koordinaten

q l m n p,, ,
T q()

Figure 3-1: forward kinematics: mapping from robot coordinates to world coordinates

3.3. Inverse kinematics

Given the position and orientationg of the TCP with respect to the base frame calculate
the joint coordinates of the robot which correspond it.

Roboter-
koordinaten

Welt-
koordinaten

ql m n p,, ,
“T q()-1”

Figure 3-1: inverse kinematics: mapping from world coordinates to robot coordinates

In the equation)(
1000

0000

qT
paon =








 the left side is given.

Problem:
Given T(q) as 16 numerical values (four of which are trivial), solve (2.24) for the 6 joint
angles q1,..,q6.

Among the 9 equations arising from the rotation matrix portion of T, only three equations
are independant. These added with 3 equations from the position vector portion of T give
6 equations with 6 unknowns. These equations are nonlinear, transcendental equations
which can be quite difficult to solve.

Problems related to inverse kinematics:

• Existence of solutions
• Multiple solutions
• Method of solution

Existence of solutions

The existence of solutions is closely linked to the workspace of the robot which is the
volume of space which the TCP of the robot can reach. For the solution to exist, the
specified goal point must be in the workspace.

Dexterous workspace: volume of space which the robot’s TCP can reach with all
orientations
Reachable workspace: volume of space which the robot’s TCP can reach with at least one
orientation

Examples:

Robot
coordinates World

coordinates

n, o, a, p

Robot
coordinates

World
coordinates

n, o, a, p

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 28/50

2 DOF robot with 21 ll =

Dexterous workspace: the origin
Reachable workspace: disc of radius 21 ll +

2 DOF robot with 21 ll ≠

Dexterous workspace: empty
Reachable workspace: ring of outer radius 21 ll + and inner radius 21 ll −

Since the 6 parameters are necessary to describe an arbitrary position and orientation of
the TCP, the degree of freedom of the robot must be at least 6, in order a dexterous
workspace exists at all.

Multiple solutions:

Figure 3-2: Example for multiple solutions for a 2 DOF robot

Figure 3-3: example for infinite solutions

Suppose in example of

Lösung 2

Lösung 1

a

n

pq

q q

4

5 6

* =0q
5

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 29/50

Figure 3-3, that the given vectors p and n are realized by the joint angles

q q q q1 2 3 5 0* * * *, , , = . The orientation can be realized by an infinite numbrer of pairs q4 and
q6 (normally by q4+q6 = 0). In practical implementations of the inverse kinematics an
additional condition will generate the solution, like

MINqqcqqc iiii

!
2

,61,62
2

,41,41)()(=−+− −−

This sum minimizes the travel range of q4 and q6 .

Method of solution:

There are two classes:
• Closed form solutions (analytical, geometrical)
• Numerical solutions

We concentrate in this lecture on closed form solutions.

Example : planar 2-dof robot:

Given)0()0(
yx pandp as cartesian position. With

1121212
)0(

1121212
)0(

sin)sincoscos(sin

cos)sinsincos(cos

qhqqqqhp

qhqqqqhp

y

x

++=

+−=

the joint values q1 and q2 can be calculated. It depends on the kinematic structure
whether an analytical solution is possible.

Geometrical solution:

Law of cosine:

ab

c
a b c b c2 2 2 2= + − ⋅ ⋅ ⋅cosα

Example: planar 2-dof robot (Figure 3-4)

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 30/50

h

q
p

P

x
0

y
0

q
h

2

1

1

2

α

β

χ

Figure 3-4: Geometrical solution of 2 dof robot

Relationships:

),(2arctan)0()0(
xy pp=α

For β the cosine rule applies:















⋅⋅

−+
=⋅⋅⋅−+=

ph

hph
phphh

1

2
2

22
1

1

22
1

2
2

2
arccos,cos2 ββ

Therefore q1 = −α β

For χ the cosine rule applies:















⋅⋅

−+
=⋅⋅⋅−+=

21

22
2

2
1

21
2

1
2
2

2

2
arccos,cos2

hh

phh
hhhhp χχ

Therefore q2 = −π χ

The arccos function is not unique. For the vector p the solution indicated by the dotted line
is given by the positiv sign of β and χ and the straight line solution by the negative sign.
Obviously the solution is not unique.

Solution for a typical 6 DOF robot with intersecting wrist axis

The general solution simplifies, if the robot has a „wrist“ with intersecting axes (axes 4-6).
A partial decoupling of position and orientation is possible.

For this case the intersection point p3 can be calculated by

6
00

3

0 dapp ⋅−=

The position of the p3 only depends on the first 3 joint values q1, q2 and q3. These 3 joint
values are calculated depending on p3.

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 31/50

Calculation of q3 :

z
0

x
0

R

p

3

3d

l
l2

1

1 q3ϕ

Figure 3-5: Calculation of q3

ϕπϕ

ϕϕ

−=
⋅⋅

−+
=

⋅⋅⋅−+=

+++=















+=

2
 :known is q re therefo

2
arccos

cos2::for cosine of law

)(,0

0

33
21

2

3
2
2

2
1

21
2
2

2
1

2

3

2
13

2
3

2
33

1

33

q
ll

Rll

llllR

dpppR

d

pR zyx

Calculation of q2 :

z
0

x
0

p

R
3

3d

l
l2

1

1 q
2

-

1
2 β

β

Figure 3-6: Calculation of q2

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 32/50

)(:known is q e therefor
2

arccos

cos2 :for cosine of law

arcsinsin

2122
31

2
2

2

3
2

1
2

231

2

3
2
1

2
22

3

13
1

3

13
1

βββ

ββ

ββ

+−=
⋅⋅

−+
=

⋅⋅⋅−+=

−
=

−
=

q
Rl

lRl

RlRll

R

dp

R

dp zz

Calculation of q1 :

Figure 3-7: Calculation of q1

q p py x1 3 32= arctan (,)
Calculation of q5 :

Figure 3-8: Calculation of q5

)arccos(35 azq •=

Calculation of q4:

 []
[] TDDDDDD

TDDDDT

DDDDDDT

⋅⋅⋅=⋅⋅

⇒⋅=⇒⋅=

⋅⋅⋅⋅⋅=

−

−

12
3

1
2

0
1

5
6

4
5

3
4

10
3

3
6

3
6

0
3

5
6

4
5

3
4

2
3

1
2

0
1

The right side of the last equation is known, since T is given and the Denavit-Hartenberg
matrices at the right side only depend on q1, q2, q3 , which now available. The left side
depends only q4, q5 and q6. The modulus of q5 is also available. It is possible to eliminate
q6 and to calculate q4 .

z
0

x
0

p
3

z

x

z

a

3

3

3

a

z
3

q
5

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 33/50

Calculation of q6:

Figure 3-9: Calculation of q6







=

•=

1000
D

 ,...,qgiven by the calculated becan Dsince known, is

)arccos(

5

0
5

0

5

0
5

0
0
5

51
0
55

0

5

0
6

pzyx

qy

oyq

z
5

x

y

n

o

a

q
6

5

5

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 34/50

4. Trajectory Generation

Scope: methods of computing a trajectory in multidimensional space

Definition: trajectory refers to a time history of position, velocity and acceleration for each
degree of freeom

Issues:
• Specification of trajectories
• Motion description easy for robot operators
• start and end point
• geometrical properties
• Representation of trajectories in the robot control
• Computing trajectories on-line (at run time)

General considerations

• Motion of robot is described as motion of TCP (tool frame)
• Supports robot operator’s imagination
• Decoupling the motion description from any robot, end-effector (modularity)
• Exchangeability with other robots
• Supports the idea of moving frames (conveyer belt)

Basic problem: move the robot from the start position, given by the tool frame Tinitial to the
end position given by the tool frame Tfinal.

Spatial motion constraints:
• Specification of motion might include socalled via points
• Via points: intermediate points between start and end points

Temporal motion contraints:
• Specification of motion might include elapsed time between via points

Requirements:
• Execution of smooth motions
• Smooth (motion) function: function and its first derivative is continous
• Jerky motions increase wear on the mechanism (gears) and cause vibrations by

exciting resonances of the robot.

There are two methods of path generation:

• Joint space schemes: path shapes in space and time are described in terms of
functions of joint angles. This motion type is named Point-to-Point motion (PTP)

• Cartesian space schemes: path shapes in space and time are described in terms of
functions of cartesian coordinates. This motion type is named Continous Path motion
(CP)

4.1. Trajectory generation in joint space (PTP motions)

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 35/50

• Path shape (in space and time) described in terms of functions of joint angles
• Description of path points (via points plus start and end point) in terms of tool frames
• Each path point is converted into joint angles by application of inverse kinematics
• Identifying a smooth function for each of the n joints passing through the via points

and ends at the target point
• Synchronisation of motion (each joint starts and ends at the same time)
• Joint which travels the longest distance defines the travel time (assuming same

maximal acceleration for each joint)

• In between via points the shape of the path is complex if described in cartesian space
• Joint space trajectory generation schemes are easy to compute
• Each joint motion is calculated independantly from other joints

.

n
o

q q
5 6

q
4

a

A: Start B: Ziel

Figure 4-1: PTP motion between two points

Many, actually infinite, smooth functions exist for such motions

Four contraints on the (single) joint function q(t) are evident:

• Start configuration Aqq =)0(, end configuration Bend qtq =)(

• Velocities 0)0(=q
�

 , 0)(=endtq
�

Four constraints can be satisfied by a polynomial of degree 3 or higher.

In case of via points the velocity is not zero.

• Start configuration Aqq =)0(, end configuration Bend qtq =)(

• Velocities 0)0(qq
��

= , endend qtq
��

=)(

Choosing velocities by

• robot user
• automatically chosen by the robot control

Using these type of polynomials does not in general generate time optimal motions

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 36/50

Linear function with parabolic blends:

q(t)

q(t)

q(t)

tb
t

tftf-tbt0
t

th
t

Figure 4-2: path with trapezoidal velocity profile

smooth motion constructed by adding parabolic blends to the linear function

Assumptions:

• Constant acceleration during blend
• Same duration for the (two) parabolic blends
• Therefore symmetry about the halfway point in time th

Velocity at the end of the blend is equal to velocity during the linear section:

bh

bh
b tt

qq
tq

−
−

=
��

 and

2
0 2

1
bb tqqq

��

+= leads to

0)(0
2 =−+− qqttqtq fbb

����

Free parameters q
��

and bt . Usually acceleration is chosen and the equation is solved for

bt .

degree/s2

degree

degree/s

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 37/50

• Acceleration must be sufficiently high (otherwise a solution does not exist)
• Acceleration is not continous, which excites vibrations

Alternative: sinoidal profile

Acceleration defined by: 





⋅⋅= t

t
qtq

b

π2
max sin)(

����

 (4.1)

q(t)

q(t)

q(t)

tb

tb

tv

tv

tE

tE

tv tE
tb

t

t

t

Figure 4-3: profile for a sinusoidal path

The following relationships are valid:

maxmax

2
max

max
max

2
max

2
max

max ,
2

,
2164 q

q
tt

qtq

q
q

qqqtqt
q f

fb
ff

fff
��

�

��

������

�

−=
−⋅

⋅
=

⋅
−

⋅
−

⋅
=

bfvb ttt
q

q
t −=

⋅
= ,

2

max

max
��

�

(4.2)

The constraint on the acceleration is

ff qqt ⋅≥⋅ 8max
2 ��

 (4.3)

Calculation of q(t):

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 38/50


















−⋅−+−−⋅+−⋅⋅=≤≤







 ⋅−⋅=≤≤















−⋅+⋅=≤≤

))(
2

cos(1
4222

)(:

2

1
)(:

1
2

cos
84

1
)(:0

2

2
2

22
max

max

2

2
2

max

v
b

b
b

f
bfffv

bvb

b

b
b

tt
t

t
t

t
tt

t
tt

q
tqttt

ttqtqttt

t
t

t
tqtqtt

π
π

π
π

��

�

��

(4.4)

4.1.1. Asynchrone PTP

independant calculation of joint angles along each path
different travel time for each axis in general (misbehaviour)

• for each joint the values max0 ,, qqq f

��

are given. The travel time ti for each joint is

calculated

4.1.2. Synchrone PTP:

each joint ends its motion at the same time

• for each joint the values max0 ,, qqq f

��

are given. The travel time ti for each joint is

calculated
• calculate the maximum travel time { }if

dofi
f tt ,

,..,1
max, max

=
=

• for each joint set max,, fif tt =
• adjust joint speeds iqmax,

�

0max,,2
1

max,max,max,2
12

max,
max,

max,

max,

,
max,, =⋅+⋅⋅−⇒+== iiffiii

i

i

i

if
fif qqtqqq

q

q

q

q
tt

and therefore

16

8

4
max,,

2
max,

2
max,max,max,

max,
iiffifi

i

qqtqtq
q

⋅−⋅
−

⋅
=

����

�

(4.5)

The negative sign of the square root has to be chosen in order to fulfill 2tb<tf,max

4.2. Trajectory generation in cartesian space

robot user would like to control the motion between start and end point
several possibilities:

• straight line motion (TCP follows a straight line)
• circular motion (TCP follows a circle segment)
• spline motion

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 39/50

• inverse kinematics needs to be calculated at run time
• computational expensive (depending on the robot)

issues:
• interpolation of TCP position (linear change of coordinates)
• interpolation of orientation (linear change of matrix elements would fail)

4.2.1. Linear Interpolation

Start point and end point are given in world frame:

start point: point target ,

,

,

,

,

,







Θ

=



























=





Θ

=



























=
B

B

B

B

B

Bz

By

Bx

B
A

A

A

A

A

Az

Ay

Ax

A

pp

p

p

x
pp

p

p

x

χ
β
α

χ
β
α

p(t)

K

A

B

x
0

z
0

y
0

p
A

p
B

sP

0

EPs

Figure 4-1: linear interpolation for the positioning of the TCP in world frame

• TCP is moving between the points A and B along a straight line
• Robot user sets motion speed and motion acceleration
• Orientation changes from (αA, βA, γA) to (αB, βB, γB)

• Orientation defined by Euler angles
• Calculation of intermediate positions p and orientations Θ:

)(
)(

)(
AB

f

p

A
pp

s

ts
ptp −⋅+= (4.6)

sP denotes the path parameter, sEP denotes the path length:

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 40/50

2
,,

2
,,

2
,,)()()(AzBzAyByAxBxABfP pppppppps −+−+−=−=

(4.7)

The motion starts at time t=0 and ends in the target at time t=tEP.

 0)(s)0(P == fPP ts
��

 .

Orientation:

Θ Θ Θ ΘΘ

Θ
()

()
()t

s t
sA

E
B A= + ⋅ −

222)()()(ABABABABfs χχββαα −+−+−=Θ−Θ=Θ

(4.8)

0)(s)0(== ΘΘΘ Ets
��

For the positioning of the TCP velocity profiles like in the PTP case are used

• Trapezoidal profile
• Sinusoidal profile

Robot user sets speed and acceleration for position and orientation
The duration of the motion (in case of sinusoidal profile) is:

Θ

Θ

Θ

Θ
Θ +=+=

b

v

v

s
t

b

v

v

s
t f

f
P

P

P

fP
fP and

(4.9)

Synchronisation of motion:

),(Θ= ffPf ttMaxt .

Case 1: tf = tfP

Θ

Θ
ΘΘΘ

ΘΘ
Θ =⋅−

⋅
−

⋅
=

b

v
bs

tbtb
v ff

b

22

 t,
42

 .

(4.10)

Case 2: tf = tfΘ

P

P
PP

fPfP
P b

v
bs

tbtb
v =⋅−

⋅
−

⋅
= bP

22

 t,
42

 .

(4.11)

Reference to the PTP motion:

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 41/50

)()()()(

)()(or)()(

)(ss(t))()(

,, ,,

max

max

tbtbtbtq

tvtvtvtq

ttstq

tttttttt

mP

mP

P

VbVbVPbPVb

Θ

Θ

Θ

ΘΘ

→→
→→

→→
→→

��

�

The following scheme presents the algorithm for straight line motions

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 42/50

p
A A

p
B B

P

, , ,

Pv
Pb v b, ,,

sf P tbP tbtf P t
f, sf, , ,

t
f

tf P

< 2 tb

< tbP2
Pv tbP tf P, ,

tf P t
f>

Pv tbP,

t f =tf P

, tbv

t f = t
f

s s(t)

(t)

(t)

p (t)

l(t), m(t), n(t)(t)

q (t)
d

 ΘΘ

Θ

Θ

ΘΘ

Correction of
v t tΘ ΘΘb f, ,

Θ

Θ

Θ

ΘΘ

Θ Θ

Θ

Calculation of

yes

no

no

Calculation of

to

Transformation from

inverse kinematics

yes
Correction of

Correction ofCorrection of

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 43/50

Problems related to cartesian motions:

• Intermediate points unreachable (out of work space)
• High joint rates near singularities
• Start and target position reachable in different solutions

4.2.2. Circular interpolation

Motion of the TCP along a circular segment from point P1 via P2 to point P3.
P2 is sometimes called auxiliary point.
The points P1,P2,P3 and the velocity vC and acceleration bC are defined by the robot user.

• from points P1,P2,P3 calculate center point M and radius r by

)()(2312 PPPPnK −×−=
�

.

E X P x n d x OXi i i= ∈ ⋅ = =
 →

{ | , : }3 ��� �

 for i=1,2 with
2322

1
2232

1212
1

1121

)(:),(:

)(:),(:

nPPdPPn

nPPdPPn
��

��

⋅+=−=
⋅+=−=

The vector
�

m of the center point M is the solution of the linear system

�

�

�

�

n

n

n

m

d

d

d

T

T

K
T

K

1

2

1

2

















=
















,

• introduction of path parameter sC(t) = r*ϕ(t), where ϕ(t) is opening angle up to actual

position. sCE = r*ϕG denotes the total path length.

• analog procedure to linear interpolation

Exercise:

Given the points P1,P2,P3 defining a circular segment, with
P1 = [0 1 1]T; P2 = [1 1 2]T; P3 = [2 1 1]T Calculate center point M and radius r.

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 44/50

r 1 r2 r
3

xC

yC

M

P1

P2

P
3

S (t)C

pC

p

r
M

p12

p
13

x0

y0

z0

K
0

R

p
23

ϕϕ
M

G

4.2.3. Corner smoothing

The above mentioned interpolation methods let the motion stop at the end point
Corner smoothing let the robot move from one segment to another without reducing speed

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 45/50

4.2.4. Spline interpolation based on Bézier curves

• Bezier curves are useful to design trajectories with certain „roundness“ properties
• Defined by a series of control points with associated weighting factors
• Weighting factors „pull“ the curve towards the control points
• Bezier curves are based on Bernstein polynomials (we consider here cubic

polynomials, n=3)

B u
n

k
u uk

n n k k(): ()=






 − −1

with normalized parameter interval.

Bernstein polynomials can be derived from formula:

1 1 1
0

= − + =






∑ −

=

−(()) ()u u
n

k
u un

k

n
n k k

Bernstein polynomials with n=2 (quadratic) and n=3 (cubic)

B u B ui i

2 3(), ()

(a) (b)

Definition of Bezier curve is based on these polynomials

X u b B u
i

i i
n

n
() ()=

=
∑

0

bi denotes the Bézier-points or control points. The polygon connecting the Bézier-points
are called Bézier-polygon or control polygon.

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 46/50

Two examples for Bezier curves with associated control polygon

de Casteljau-Algorithm is used to calculate points on the Bezier curve: X un ()0

Geometrical interpretation: Consecutive division of control polygon () :1 0 0− u u

Exercise:
Given the (two-dimensional) control points B0, B1, B2, and B3 for a cubic Bezier curve by
B0 =(0,0)T , B1 =(1,0)T , B2 =(1,2)T , B3 =(0,2)T

Calculate)5,0(X geometrically and by computation of X u b B u
i

i i
n

n
() ()=

=
∑

0

Transformation of parameter interval [0 , 1] to [,]a b by u a b a u� + −() :

Generalized definition of Bernstein polynomials:

b4b2

b3

b5

b1

b0

b4

b0

b5

b3

b2

b1

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 47/50

B u
b a

n

k
b u u ak

n
n

n k k():
()

() ()=
−







 − −−1

Further examples:

(a) (b)

Problems:

• Path length can not be calculated in closed form (like for linear or circular segments)
• Numerical approximation possible

• Integration in robot controllers:
• Teach points programmed by robot user
• System „estimates“ tangents

B2

B3
B1

B0

B2

B3

B3

B1

B0

B0 B1 B3 B2
B0 B2 B1

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 48/50

Synchronisation with orientation:

Generic trajectory generation (example linear interpolation):

B P

B P P P

B P P P

B P

A

A E A

E E A

E

0

1
1
3

2
1
3

3

:

: ()

: ()

:

=

= + −

= − −
=

�

e y

�

ez

�

ex

�

e y

�

ez

�

ex

�

e y

�

ez
�

ex

PP

P

�

e y

�

ez
�

ex

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 49/50

5. Robot programming languages

Robot programming systems are the interface between the robot and the human user.
The sophistication of such an user interface is becoming very important as robots are
applied to more and more demanding industrial applications.
In considering the programming of manipulators, it is important to remember that they are
typically only a minor part of an automated process. The term workcell is used to describe
a local collection of equipment which may include one or more robots, conveyor systems,
part feeders and fixtures. At the next higher level, workcells might be interconnected in
factorywide networks so that a central control computer can control the overall factory
flow.

5.1. Levels of robot programming

Three levels of robot programming exist:

• Teach In programming
• Explicit robot languages
• Task level programming languages

Teach In programming

The robot will be moved by the human user through interaction with a teach pendant
(sometimes called teach box). Teach pendant are hand-held button boxes which allow
control of each robot joint or of each cartesian degree of freedom. Todays controllers
allow alphanumeric input, testing and branching so that simple programs involving logic
can be entered.

Explicit robot languages

With the arrival of inexpensive and powerful computers, the trend has been increasingly
toward programming robots via programs written in computer programming languages.
Usually these computer programming languages have special features which apply to the
problems of programming robots. An international standard has been established with the
programming language IRL (Industrial Robot Language, DIN 66312)

Task level programming

The third level of robot programming methodology is embodied in task-level programming
languages. These are languages which allow the user to command desired subgoals of
the task directly, rather than to specify the details of every action the robot is to take. In
such a system, the user is able to include instructions in the application program at a
significantly higher level than in an explicit programming language. A task-level
programming system must have the ability to perform many planning tasks automatically.
For example, if an instruction to grasp the bolt is issued, the system must plan a path of
the manipulator which avoids collision with any surrounding obstacles, automatically
choose a good grasp location on the bolt, and grasp it. In contrast, in an explicit robot
language, all these choices must be made by the programmer.

The border between explicit robot programming languages is quite distinct. Incremental
advances are beeing made to explicit robot programming languages which help to ease
programming, but these enhancements cannot be counted as components of a task-level
programming system. True task-level programming of robots does not exist yet in
industrial controllers but is an active topic of research.

Introduction to Robotics: Module Trajectory generation and robot programming
FH Darmstadt, summer term 2000

E:\Robot_Erw\Publications\LectureRobotics.doc 50/50

5.2. Requirements of a robot programming language

Important requirements of a robot programming language are:

• World modeling
• Motion specification
• Flow of execution
• Sensor inegration

World modeling:

• Existence of geometric types to present
• Joint angle sets
• Cartesian positions
• Orientations
• Representation of frames

• Ability to to do math on on structured types like frames, vectors and rotation matrices
• Ability to describe geometric entities like frames in several different convenient

representations with the ability to convert between representations

Motion execution:

• Description of desired motion (motion type, velocity, acceleration)
• Specifications of via points, goal points, corner smoothing parameters
• Ability to specify goals relative to various frames, including frames defined by the user

and frames in motion (on a conveyor for example)

Flow of execution:

• Support of concepts like testing and branching
• Looping, calls to subroutines
• Parallel processing, signal and wait primitives
• Interrupt handling

Sensor integration:

• Interaction with sensors
• Integration with vision systems
• Sensor to track the conveyor belt motion
• Force torque sensor for force control strategies

	Trajectory generation and robot programming
	Content
	1. Motivation
	1. Why study robotics ?
	2. Terminology
	Kinematics
	Forward kinematics
	Inverse kinematics
	Robot programming language
	Offline programming language
	Robot systems
	Programming system
	Robot control
	Robot mechanics

	3. Types of robot motion
	PTP (point to point) motion
	CP (continuous path) motion

	2. Spatial descriptions and transformations
	1. Descriptions : positions, orientations and frames
	Coordinate system
	Geometrical description of a vector
	Description of a vector in a coordinate system
	Dot product of two vectors
	Rotation matrix
	Properties of rotations
	Homogeneous coordinate (frames)
	Interpretations

	2. Considerations
	3. Orientations defined by Euler-Angles
	Definition : X-Y-Z fixed angles
	Definition A : (Z-Y-Z Euler angles)
	Definition B : (Z-Y-X Euler angles)
	Definition : Equivalent angle-axis

	3. Robot kinematics
	1. Link connection description by Denavit-Hartenberg notation
	Parameters
	Link parameters θ, d, a and α
	2-dot robot with perpendicular axes
	3-dot robot with 2 rotational joints and 1 prismatic joint
	6-dot robot with 6 rotational joints (frequently used kinematic structure)

	2. Forward kinematics
	3. Inverse kinematics
	Mapping from world coordinates to robot coordinates
	Problems related to inverse kinematics
	Existence of solutions
	Examples
	Multiple solutions
	Planar 2-dot robot

	4. Trajectory generation
	1. Trajectory generation in joint space (PTP motions)
	2. Asynchrone PTP
	2. Synchrone PTP

	3. Trajectory generation in cartesian space
	1) Linear interpolation
	2) Circular interpolation
	3) Corner smoothing

	4. Spline interpolation based on Bezier curves

	5. Robot programming languages
	1. Levels of robot programming
	Teach in programming
	Explicit robot languages
	Task level programming

	2. Requirements of a robot programming language
	World modeling
	Motion execution
	Flow of execution
	Sensor integration

